
QCSPCChart SPC Control Chart
Tools for Javascript

Contact Information

Company Web Site: http:// www.quinn-curtis.com

Electronic mail

General Information: info@quinn-curtis.com
Sales: sales@quinn-curtis.com

Technical Support Forum

http://www.quinn-curtis.com/ForumFrame.htm

 Revision Date 9/26/2014 Rev. 2.21

SPC Control Chart Tools Javascript Documentation and Software Copyright Quinn-Curtis, Inc. 2014

http://www.quinn-curtis.com/
http://www.quinn-curtis.com/ForumFrame.htm
mailto:sales@quinn-curtis.com?subject=QCSPCChart%20for%20.Net
mailto:info@quinn-curtis.com?subject=QCSPCChart%20for%20.Net
http://www.quinn-curtis.com/

Quinn-Curtis, Inc. Tools for Javascript END-USER LICENSE AGREEMENT

IMPORTANT-READ CAREFULLY: This Software End-User License Agreement ("EULA") is a legal agreement
between you (either an individual or a single entity) and Quinn-Curtis, Inc. for the Quinn-Curtis, Inc. SOFTWARE
identified above, which includes all Quinn-Curtis, Inc.software (on any media) and related documentation (on any
media). By installing, copying, or otherwise using the SOFTWARE, you agree to be bound by the terms of this
EULA. If you do not agree to the terms of this EULA, do not install or use the SOFTWARE. If the SOFTWARE
was mailed to you, return the media envelope, UNOPENED, along with the rest of the package to the location where
you obtained it within 30 days from purchase.

1. The SOFTWARE is licensed, not sold.

2. GRANT OF LICENSE.

(A) Developer License. After you have purchased the license for SOFTWARE, and have received the file
containing the licensed copy, you are licensed to copy the SOFTWARE only into the memory of the number of
computers corresponding to the number of licenses purchased. The primary user of the computer on which each
licensed copy of the SOFTWARE is installed may make a second copy for his or her exclusive use on a portable
computer. Under no other circumstances may the SOFTWARE be operated at the same time on more than the
number of computers for which you have paid a separate license fee. You may not duplicate the SOFTWARE in
whole or in part, except that you may make one copy of the SOFTWARE for backup or archival purposes. You may
terminate this license at any time by destroying the original and all copies of the SOFTWARE in whatever form.

(B) 30-Day Trial License. You may download and use the SOFTWARE without charge on an evaluation
basis for thirty (30) days from the day that you DOWNLOAD the trial version of the SOFTWARE. The termination
date of the trial SOFTWARE is embedded in the downloaded SOFTWARE and cannot be changed. You must pay
the license fee for a Developer License of the SOFTWARE to continue to use the SOFTWARE after the thirty (30)
days. If you continue to use the SOFTWARE after the thirty (30) days without paying the license fee you will be
using the SOFTWARE on an unlicensed basis.

Redistribution of 30-Day Trial Copy. Bear in mind that the 30-Day Trial version of the SOFTWARE becomes
invalid 30-days after downloaded from our web site, or one of our sponsor’s web sites. If you wish to redistribute the
30-day trial version of the SOFTWARE you should arrange to have it redistributed directly from our web site. If you
are using SOFTWARE on an evaluation basis you may make copies of the evaluation SOFTWARE as you wish;
give exact copies of the original evaluation SOFTWARE to anyone; and distribute the evaluation SOFTWARE in its
unmodified form via electronic means (Internet, BBS's, Shareware distribution libraries, CD-ROMs, etc.). You may
not charge any fee for the copy or use of the evaluation SOFTWARE itself. You must not represent in any way that
you are selling the SOFTWARE itself. You must distribute a copy of this EULA with any copy of the SOFTWARE
and anyone to whom you distribute the SOFTWARE is subject to this EULA.

(C) Redistributable License. The standard Developer License permits the programmer to deploy and/or
distribute applications that use the Quinn-Curtis SOFTWARE, royalty free. We do not allow developers to use this
SOFTWARE to create a graphics or charting toolkit (a library or any type of graphics component that will be used in
combination with a program development environment) for resale to other developers. Should you need to do this,
you need to have a licensing agreement with Quinn-Curtis which permits redistribution of our libraries as part of a
development system.

If you utilize the SOFTWARE in an application program, or in a web site deployment, should we ask, you must
supply Quinn-Curtis, Inc. with the name of the application program and/or the URL where the SOFTWARE is
installed and being used.

 3. RESTRICTIONS. You may not reverse engineer, de-compile, or disassemble the SOFTWARE, except and only
to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation. You may not
rent, lease, or lend the SOFTWARE. You may not use the SOFTWARE to perform any illegal purpose.

 4. SUPPORT SERVICES. Quinn-Curtis, Inc. may provide you with support services related to the SOFTWARE.
Use of Support Services is governed by the Quinn-Curtis, Inc. polices and programs described in the user manual, in
online documentation, and/or other Quinn-Curtis, Inc.-provided materials, as they may be modified from time to

time. Any supplemental SOFTWARE code provided to you as part of the Support Services shall be considered part
of the SOFTWARE and subject to the terms and conditions of this EULA. With respect to technical information you
provide to Quinn-Curtis, Inc. as part of the Support Services, Quinn-Curtis, Inc. may use such information for its
business purposes, including for product support and development. Quinn-Curtis, Inc. will not utilize such technical
information in a form that personally identifies you.

 5. TERMINATION. Without prejudice to any other rights, Quinn-Curtis, Inc. may terminate this EULA if you fail
to comply with the terms and conditions of this EULA. In such event, you must destroy all copies of the
SOFTWARE.

 6. COPYRIGHT. The SOFTWARE is protected by United States copyright law and international treaty provisions.
You acknowledge that no title to the intellectual property in the SOFTWARE is transferred to you. You further
acknowledge that title and full ownership rights to the SOFTWARE will remain the exclusive property of Quinn-
Curtis, Inc. and you will not acquire any rights to the SOFTWARE except as expressly set forth in this license. You
agree that any copies of the SOFTWARE will contain the same proprietary notices which appear on and in the
SOFTWARE.

 7. EXPORT RESTRICTIONS. You agree that you will not export or re-export the SOFTWARE to any country,
person, entity, or end user subject to U.S.A. export restrictions. Restricted countries currently include, but are not
necessarily limited to Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria. You warrant and represent that neither
the U.S.A. Bureau of Export Administration nor any other federal agency has suspended, revoked or denied your
export privileges.

8. NO WARRANTIES. Quinn-Curtis, Inc. expressly disclaims any warranty for the SOFTWARE. THE
SOFTWARE AND ANY RELATED DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OR MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR PERFORMANCE OF THE
SOFTWARE REMAINS WITH YOU.

9. LIMITATION OF LIABILITY. IN NO EVENT SHALL QUINN-CURTIS, INC. OR ITS SUPPLIERS BE
LIABLE TO YOU FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES OF
ANY KIND ARISING OUT OF THE DELIVERY, PERFORMANCE, OR USE OF THE SUCH DAMAGES. IN
ANY EVENT, QUINN-CURTIS’S LIABILITY FOR ANY CLAIM, WHETHER IN CONTRACT, TORT, OR
ANY OTHER THEORY OF LIABILITY WILL NOT EXCEED THE GREATER OF U.S. $1.00 OR LICENSE
FEE PAID BY YOU.

10. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE is provided with RESTRICTED RIGHTS.
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
The Rights in Technical Data and Computer SOFTWARE clause of DFARS 252.227-7013 or subparagraphs (c)(i)
and (2) of the Commercial Computer SOFTWARE- Restricted Rights at 48 CFR 52.227-19, as applicable.
Manufacturer is: Quinn-Curtis, Inc., 18 Hearthstone Dr., Medfield MA 02052 USA.

11. MISCELLANEOUS. If you acquired the SOFTWARE in the United States, this EULA is governed by the laws
of the state of Massachusetts. If you acquired the SOFTWARE outside of the United States, then local laws may
apply.

Should you have any questions concerning this EULA, or if you desire to contact Quinn-Curtis, Inc. for any reason,
please contact Quinn-Curtis, Inc. by mail at: Quinn-Curtis, Inc., 18 Hearthstone Dr., Medfield MA 02052 USA, or
by telephone at: (508)359-6639, or by electronic mail at: support@Quinn-Curtis.com.

Table of Contents
1. SPC Control Chart Tools for Javascript...1

Introduction..1
Tutorials...1
HTML..1
HTML5..2
Javascript..2
GWT (Google Web Toolkit) as a Productivity Tool...3
JSON as the Scripting Language for an SPC Chart...4
SPC Control Chart Tools Background...6
Quinn-Curtis SPC (Statistical Process Control) Software...8
Web-Based Versions of QCSPCChart...10
QCSPCChart for Javascript...11
Directory Structure of QCSPCChart for Javascript...19
Tutorials...21
Customer Support..21
Chapter Summary..21

2. Standard SPC Control Charts ..23
Variable Control Charts...24
Attribute Control Charts..40
Other Important SPC Charts..46

3. Overview of JSON Scripting of SPC Charts...50
Top Level...50
Secondary Level...50
Third Level...51
Full List of the Static SPCChartStrings Objects..65

4. Static Property Initialization..71
5. SPC Initial Chart Setup..77

InitChartProperties setup...78
Chart and Table Positioning...83
Scrollbar...84
UseNoTable...85

6. SPC Data Table Setup..88
Table Setup Items ...90

7. SPC Chart Setup..99
Enable Chart...100
Axes...100
Control Limits..107

8. Adding Data to an SPC Chart..123
9. Calculate and Update Methods..137
10. Variable Control Charts...139

Time-Based and Batch-Based SPC Charts..141
Creating a Batch-Based Variable Control Chart..189
Changing Default Characteristics of the Chart..196

Formulas Used in Calculating +-3 Sigma Conntrol Limits for Variable Control Charts
..199

11. SPC Attribute Control Charts..210
Introduction to SPC Attribute Control Charts...210
Time-Based and Batch-Based SPC Charts..211
Creating a Batch-Based Attribute Control Chart...248
Changing Default Characteristics of the Chart..254
Formulas Used in Calculating Control Limits for Attribute Control Charts...............256

12. Process Capability Ratios and Process Performance Indices....................................260
Introduction to Process Capability Ratios and Process Performance260
Formulas Used in Calculating the Process Capability Ratios......................................261

13. Named and Custom Control Rule Sets..265
Named Rule Sets..265
Western Electric (WECO) Rules...266
Nelson Rules..267
AIAG Rules...267
Juran Rules...268
Hughes Rules...268
Gitlow Rules..268
Duncan Rules ...269
Westgard Rules ...269
Control Rule Templates...269
Implementing a Named Rule Set...275
Modifying Existing Named Rules...278
Creating Custom Rules Sets Based on Named Rules..279
Creating Custom Rules Sets Based on a Template..282
Creating Custom Rules Not Associated With Sigma Levels.......................................284

14. Event Handling for Alarms and Tooltips...289
Processing Alarms...289
Processing Data Tooltips...292

15. JSNI Calls into the QCSPCChart Library..298
Chart Creation/Modification Functions...298
Data Simulation Functions...301
Display of JSON Script..304
Data Retrieval Functions..305

16. CSS Style Sheets..309
Background Color..309
Default Font Family ..310
Chart Position...311

17. Frequency Histogram...313
Frequency Histogram Chart...313
Supplying Data to A Frequency Histogram Chart...315
JSON Structure Summary..320

18. Pareto Diagrams...323
Pareto Diagrams...323

Supplying a Pareto Chart with Data...325
JSON Structure Summary..326

19. Regionalization...329
Full List of the Static SPCChartStrings Objects..330

20. Using SPC Control Chart Tools for Javascript to Create Web Applications...........335
Deployment to an actual web site..335
Deployment to a computer that is not a web server...336
Example Applications..338
Javascript, jQuery, Ajax and PHP...349

Appendix..353
List of Color Constants:...353

1. SPC Control Chart Tools for Javascript
Introduction
HTML
HTML5
Javascript
GWT
JSON
SPC Control Chart Tools
Web-based Versions of QCSPCChart
QCSPCChart for Javascript
Quinn-Curtis SPC Software
Directory Structure of QCSPCChart for Javascript
Tutorials
Customer Support
Chapter Summary

Introduction
The QCSPCChart for Javascript software represents an adaptation of the QCSPCChart library to the
Javascript and the HTML5 user interface framework. It was created utilizing the Google GWT (Google
Web Toolkit) development tool. All of the system dependent graphics (.Net GDI+, Java graphics,
Android graphics, etc) have been replaced with HTML5, Canvas-based, Javascript equivalents. The
result is an easy to use, interactive, SPC Charting package which will run on any computer which
supports a modern browser. A modern browser is considered any browser which supports HTML5, and
most importantly, supports the HTML5 Canvas element. The browsers listed below meet this
requirement.

IE (9+)
Firefox (1.5+)
Safari (1.3+)
Chrome
Opera (9+)

While IE 8 (Internet Explorer) supports a limited subset of HTML5 features, it does not support the
Canvas element to the degree required by this software, and therefore is considered incompatible.

Tutorials
Chapter 20 is a tutorial that describes how to define a simple chart and deploy it to a web page. Read the
first couple of chapters, and then the tutorial.

HTML
Originally, web pages were static. The purpose of a web browser was to display a static HTML
document. The static limitation quickly ran its course and users wanted more and more direct interaction
with a web page, analogous to interacting with an application program installed on on a desktop
computer. So Javascript was invented to control elements of the web page, dynamically serve up
documents, and asynchronously communicating with servers in support user-driven content. Originally

2 Introduction

meant as a client-side programming language, to be run in a web browser, its role has been expanded to
include include desktop, cloud, and server applications.

HTML is a text-based standard format for the display of text and data by a web browser. Javascript can
automate elements within HTML to render content to the browser. And HTML elements can call
Javascript code in order to process content requests.

HTML5
HTML underwent a major revision upgrade with the introduction of a preliminary HTML5 specification
around 2008. HTML5 represents an attempt to integrate many of the features required for the cross
platform support of current, and next generation desktop, mobile and cloud applications. It specifically
adds elements for the support of audio, video, and vector-based device independent graphics
applications. It is now in the final stages of the standardization process, with an final specification
expected by the end of 2014. Because HTML5 is expected to play an critical role in the future of the
Internet, the major web browsers have already adopted most all of the features set forth in the working
drafts of the specification.

According to the late Steve Jobs, the future of web programming is HTML5. This comment was
prompted in an interview with Jobs about his ongoing feud with Adobe and their ubiquitous Flash player
plug-in. Even though the Flash player had the dominant market share as means of displaying audio and
video in a web browser, Jobs refused to permit support for Flash in the Apple iOS mobile operating
systems. His stated reason was that HTML5, with its extensive support for audio and video, renders
Flash technology obsolete. Why install a separate plug-in (Flash), when a modern browser with
integrated HTML5 support offers vastly superior routines for rendering audio and video. The way to get
at all of the features of HTML5 is to use Javascript. Javascript and HTML5 are now supported on all
major browsers, running on all major operating systems, for both desktop and mobile platforms. Sounds
ideal. You might think that all you have to do is use HTML5 and Javascript in your web page, and it will
work flawlessly in every case. But you would be wrong. HTML5 implementations are left up to the web
browser companies, rather than a central controlling authority, and because of this, they all differ.
Developers programming directly in Javascript have to become familiar with the differences in the
HTML5 support across browsers. In their Javascript code they must detect which browser is executing
the Javascript code, and branch to code specific to that browser. For an advanced application, this can be
very tedious and time consuming.

Javascript
Javascript is an interpreted programming language created to make web browsers more dynamic and
interactive. It was originally developed by Netscape in 1995 as a feature of their web browser. While it
includes "Java" as the root of its name, that was a unfortunate marketing gimmick. Netscape picked the
name solely to ride the coat-tails of the hype being written about the Java programming language
introduced at approximately the same time. The only resemblance Javascript has to the Java
programming language is a small degree of syntactical similarity, mostly the result of both languages
being strongly influenced by C++ (for Java) and C (for Javascript). Since that time, all of the major
browsers have added support for Javascript.

Introduction 3

GWT (Google Web Toolkit) as a Productivity Tool
The conversion of our QCSPCChart software to Javascript and HTML5 posed significant challenges.
While Javascript has some object-oriented features, it is not a true object-oriented language. So adapting
software written in an OOP language (C#, Java, and C++, among others) to Javascript, is a giant step
backwards. We ruled out manually translating the software into Javascript as impractical based on time
and cost constraints.

We have versions of our current products (QCChart2D, QCRTGraph, QCSPCChart, QCMatPack, and
QCChart3D) in both Java and C#. We investigated what tools were available to translate Java and C# to
Javascript, and quickly arrived at the conclusion that the Google GWT, used in conjunction with the
Eclipse development environment, was the only workable option. So that locked us into to using a Java
version of QCSPCChart as the code base. We have two different variants of QCSPCChart written in
Java. The first is a pure Java version suitable for Java desktop, applet and servlet applications. That
version will run on Windows and Linux machines. The second is a version written for the Android
platform which runs predominantly on phones and tablets. The main difference between the two
versions is that they utilize different graphics libraries. The pure Java versions makes calls to the
standard Java java.awt.graphics libraries. These libraries are not available under Android, and in the
Android version of QCSPCChart we handle screen output by drawing to a Android Canvas object using
the standard Android android.graphics library.

The GWT programming environment supports neither java.awt.graphics, nor android.graphics
graphics libraries. Instead they have a third library, com.google.gwt.canvas, optimized for Javascript
and HTML5. So we created a new version of the QCSPCChart software around the GWT
com.google.gwt.canvas graphics library. It is highly optimized for rendering graphics and text in an
HTML5 Canvas object, and because of this it can't be used in browsers which don't have a full HTML5
Canvas implementation. The only commonly used browser this rules out is IE8, because the HTML5
Canvas object is only partially supported in that version. The software works fine with IE9 and IE10. In
fact, we find the hardware acceleration of HTML5 Canvas rendering is fastest with IE9 and IE10,
compared to Firefox, Chrome, and Safari.

GWT supports a subset of the standard Java libraries, in order to minimize the complexity of the Java to
Javascript cross compiler. While somewhat limiting, it is a useable subset. Whenever we ran into
library calls in our original code which were not supported by GWT, we just substituted other, similar
library calls which were supported, or in some cases we just recreated the function of the original library
call and added it into our QCSPCChart library.

So, once a Java code base is written in GWT compatible code, it can be compiled into a Javascript
version of the same code base. A majority of GWT programmers write an entire application using GWT.
For example, a typical application would be a browser based e-mail app, such as Google gmail. The e-
mail system is written in Java, compiled using GWT, and the compiler output is a set of Javascript files.
You copy the Javascript files to the server and invoke the application from an HTML page which
references the GWT files. Direct Javascript calls, from handwritten Javascript code calling internal
library functions of the application is not really supported. This is because the Javascript code generated
by the GWT compiler, is highly optimized, compressed, and obfuscated, and it also undergoes a major
structural change as the OOP source code (Java) is translated into non-OOP code (Javascript). There are
ways around this using a feature of GWT call JSNI (JavaScript Native Interface) and we utilize that

4 Introduction

feature in a few critical areas. But in general, the programmer (i.e. you), will not be calling our
Javascript library functions directly.

The GWT compiler produces up to six variants of your web program, one for each of the major
browsers it supports. GWT automatically processes the differences in HTML5 support across the major
browsers, and generates browser specific Javascript in support of your original Java source program.
When the browser starts executing the GWT generated program, the first thing it does is detect which
browser the code is executing in, and then loads the Javascript module appropriate to the browser, using
a technique known as deferred binding. This is very efficient, because only the highly optimized code
for the specific browser is downloaded from the server to the client, all of the other versions are left
behind.

GWT (Google Web Toolkit) is extensively documented by Google on their web site:
http://www. gwt project.org/
Here is a summary of GWT on Wikipedia: http://en.wikipedia.org/wiki/ Google _Web_Toolkit

JSON as the Scripting Language for an SPC Chart
As we said earlier, most users of GWT write their application program in Java and compile it into
Javascript, then deploy the resulting Javascript files and folders to a website. Unfortunately, this does
not work if you are a third party vender who wants to create a library for use by programmers writing
their application using HTML and Javascript on a web page. First, you don't have the underlying source
code (written in Java using GWT libraries) to our QCSPCChart library. Second, you probably don't want
to get involved with Java and GWT – it's outside of your comfort zone. Third, you can't call into our
Javascript libraries, even if you are using Javascript, because the libraries are compressed, un-
objectived, and obfuscated, a by-product of the GWT compile.

So, a programmer cannot customize SPC charts using Javascript calls, at least not in the same fashion as
you do with the .Net and Java versions of our software. Instead, you will customize SPC charts using a
scripting language we have developed, utilizing JSON (JavaScript Object Notation). JSON is a widely
used, text-based open standard designed for human-readable data interchange. It can be used with
virtually any language, though I expect that you will imbed the JSON in Javascript found in the host
HTML page. A typical SPC chart script looks like:

{
 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },
 "Scrollbar": {
 "EnableScrollBar": true
 },
 "TableSetup": {
 "HeaderStringsLevel": "HEADER_STRINGS_LEVEL2",
 "EnableInputStringsDisplay": true,

http://en.wikipedia.org/wiki/Google_Web_Toolkit
http://en.wikipedia.org/wiki/Google_Web_Toolkit
http://en.wikipedia.org/wiki/Google_Web_Toolkit
http://www.gwtproject.org/
http://www.gwtproject.org/
http://www.gwtproject.org/

Introduction 5

 "EnableCategoryValues": false,
 "EnableCalculatedValues": true,
 "EnableTotalSamplesValues": true,
 "EnableNotes": true,
 "EnableTimeValues": true,
 "EnableNotesToolTip": true,
 "TableBackgroundMode": "TABLE_NO_COLOR_BACKGROUND",
 "TableAlarmEmphasisMode": "ALARM_HIGHLIGHT_BAR",
 "ChartAlarmEmphasisMode": "ALARM_HIGHLIGHT_SYMBOL",
 "ChartData": {
 "Title": "Variable Control Chart (X-Bar R)",
 "PartNumber": "283501",
 "ChartNumber": "17",
 "PartName": "Transmission Casing Bolt",
 "Operation": "Threading",
 "SpecificationLimits": "27.0 to 35.0",
 "Operator": "J. Fenamore",
 "Machine": "#11",
 "Gauge": "#8645",
 "UnitOfMeasure": "0.0001 inch",
 "ZeroEquals": "zero",
 "DateString": "7/04/2013",
 "NotesMessage": "Control limits prepared May 10",
 "NotesHeader": "NOTES"
 }
 },
 "Events": {
 "EnableDataToolTip": true,
 "EnableJSONDataToolTip": false,
 "AlarmStateEventEnable": false
 },
 "PrimaryChartSetup": {
 "FrequencyHistogram": {
 "EnableDisplayFrequencyHistogram": true
 }
 },
 "SecondaryChartSetup": {
 "FrequencyHistogram": {
 "EnableDisplayFrequencyHistogram": true
 }
 }
 }
}

This example (BatchXBarR) is extracted from an example script (chartDefExampleScripts.js) where you
will find many of the example listed in this software. The are many more options than the ones seen in
the example above.

JSON data structures can be defined using Javascript, as we do in all of our example web pages, and
then converted to a JSON string using a Javascript utility function named, appropriately enough, JSON.
The JSON.stringify function will take a Javascript data structure and covert it to a JSON string. All of
our examples convert a Javascript data structure into JSON using JSON.stringify. You can also go the
other direction. Some event processing routines in our library (alarms, tooltips, and data retrieval) will

6 Introduction

return data embedded in a JSON string. You can convert a JSON string into a Javascript data object
using the JSON.parse function. You want the values as a Javascript data object because then you can
access the data using standard Javascript dot notation:

 var s = pushGetJSONSampleIntervalData(32);

 var jsonobj = JSON.parse(s);

 var s2 = jsonobj.SPCSampleIntervalData.PrimaryChartAlarmMessage;

JSON is widely documented on the web, so try and read the following links:

http://www.json.org/ - Introducing JSON

http://www.json.org/js.html – JSON in Javascript

SPC Control Chart Tools Background
In a competitive world environment, where there are many vendors selling products and services that
appear to be the same, quality, both real and perceived, is often the critical factor determining which
product wins in the marketplace. Products that have a reputation for higher quality command a premium,
resulting in greater market share and profit margins for the manufacturer. Low quality products not only
take a big margin hit at the time of sale, but also taint the manufacturer with a reputation that will hurt
future sales, regardless of the quality of future products. Users have a short memory. A company’s
quality reputation is only as good as the quality of its most recent product.

The measurement, control and gradual improvement of quality is the goal of all quality systems, no
matter what the name. Some of the more common systems are known as SCC (Statistical Quality
Control) Quality Engineering, Six-Sigma, TQM (Total Quality Management), TQC (Total Quality
Control), TQA (Total Quality Assurance) and CWQC (Company- Wide Quality Control). These
systems work on the principle that management must integrate quality into the basic structure of the
company, and not relegate it to a Quality Control group within the company. Historically, most of the
innovations in quality systems took place in the 20th century, with pioneering work carried out by
Frederick W. Taylor (Principles of Scientific Management), Henry Ford (Ford Motor), W. A. Shewhart
(Bell Labs), W. E. Deming (Department of Agriculture, War department, Census Bureau), Dr. Joseph
M. Juran (Bell Labs), and Dr. Armand V. Feigenbaum among others. Most quality control engineers are
familiar with the story of how the statistical quality control pioneer, W. E. Deming, frustrated that US
manufactures only gave lip service to quality, took the quality system he developed to Japan, where it
was embraced with almost religious zeal. Japanese industry considers Deming a national hero, where his
quality system played a major role in the postwar expansion of the Japanese economy. Twenty to thirty
years after Japan embraced his methods, Deming found a new audience for his ideas at US companies
that wanted to learn Japanese methods of quality control.

http://www.json.org/js.html
http://www.json.org/

Introduction 7

All quality systems use Statistical Process Control (SPC) to one degree or another. SPC is a family of
statistical techniques used to track and adjust the manufacturing process in order to produce gradual
improvements in quality. While it is based on sophisticated mathematical analysis involving sampling
theory, probability distributions, and statistical inferences, SPC results can usually be summarized using
simple charts that even management can understand. SPC charts can show how product quality varies
with respect to critical factors that include things like batch number, time of day, work shift personal,
production machine, and input materials. These charts have odd names like X-Bar R, Median Range,
Individual Range, Fraction Number Non-Conforming, and NP. The charts plot some critical process
variable that is a measurement of product quality and compares it to predetermined limits that signify
whether or not the process is working properly.

Initially, quality control engineers create all SPC charts by hand. Data points were painstakingly
gathered, massaged, summed, averaged and plotted by hand on graph paper. It is still done this way in
many cases. Often times it is done by the same factory floor personal who control the process being
measured, allowing them to "close the loop" as quickly as possible, correcting potential problems in the
process before it goes out of control. Just as important, SPC charts tell the operator when to leave the
process alone. Trying to micro-adjust a process, when the process is just exhibiting normal random
fluctuations in quality, will often drive the process out of control faster than leaving it alone.

The modern tendency is to automate as much of the SPC chart creation process as possible. Electronic
measuring devices can often measure quality in real-time, as items are coming off the line. Usually some
form of sampling will be used, where one of every N items is measured. The sampled values form the
raw the data used in the SPC chart making process. The values can be entered by hand into a SPC chart
making program, or they can be entered directly from a file or database connection, removing the
potential for transcription errors. The program displays the sampled data in a SPC chart and/table where
the operator or quality engineer can make a judgment about whether or not the process is operating in or
out of control.

Usually the SPC engineer tasked with automating an existing SPC charting application has to make a
decision about the amount of programming he wants to do. Does he purchase an application package
that implements standard SPC charts and then go about defining the charts using some sort of menu
driven interface or wizard. This is probably the most expensive in terms of up front costs, and the least
flexible, but the cheapest in development costs since a programmer does not have to get involved
creating the displays. Another choice is to use a general purpose spreadsheet package with charting
capability to record, calculate, and display the charts. This is probably a good choice if your charting
needs are simple, and you are prepared to write complicated formulas as spreadsheet entries, and your
data input is not automated. Another choice is writing the software from scratch, using a charting toolkit
like our QCChart2D software as the base, and creating custom SPC charts using the primitives in the
toolkit. This is cheaper up front, but may be expensive in terms of development costs. Often times the
third option is the only one available because the end-user has some unique requirement that the pre-
packaged software can’t handle, hence everything needs to programmed from scratch.

The current SPC trend is for data to be centralized on a server in a database, and the display to be
localized on the client computer. The local display on the client can be a desktop application, or a web-
based application. We have several versions of QCSPCChart for the display of SPC data in a desktop
application: specifically for .Net, WPF (Windows Presentation Foundation), and Java. For mobile
applications, we have QCSPCChart for Android. For web based applications we have a Silverlight

8 Introduction

version. It is also possible to use the .Net, WPF, and Java versions in a web application, though each has
their drawbacks.

Quinn-Curtis SPC (Statistical Process Control) Software

We have created a library of SPC routines that represents an intermediate solution. Our SPC software
still requires an intermediate level programmer, but it does not require advanced knowledge of SPC or
of charting. Built on top our QCChart2D, it implements templates and support classes for the following
SPC charts and control limit calculations.

Variable Control Charts Templates
Fixed sample size subgroup control charts

X-Bar R – (Mean and Range Chart)
X-Bar Sigma (Mean and Sigma Chart)
Median and Range (Median and Range Chart)
X-R (Individual Range Chart)
EWMA (Exponentially Weighted Moving Average Chart)
MA (Moving Average Chart)
MAMR (Moving Average / Moving Range Chart)
MAMS (Moving Average / Moving Sigma Chart)
CuSum (Tabular Cumulative Sum Chart)

Variable sample size subgroup control charts
X-Bar Sigma (Mean and Sigma Chart)

Attribute Control Charts Templates
Fixed sample size subgroup control charts

p Chart (Fraction or Percent of Defective Parts)
np Chart (Number of Defective Parts)
c-Chart (Number of Defects)
u-Chart (Number of Defects per Unit)
Number Defects per Million (DPMO)

Variable sample size subgroup control charts
p Chart (Fraction or Percent of Defective Parts)
u-Chart (Number of Defects per Unit)

Analysis Chart Templates
Frequency Histograms
Probability Charts
Pareto Charts

SPC Support Calculations
Array statistics (sum, mean, median, range, standard deviation, variance, sorting)

SPC Control Limit Calculations
High and low limit control calculations for X-Bar R, X-Bar Sigma, Median and Range, X-R, p,
np, c and u charts

SPC Process Capability Calculations

Introduction 9

Variable Control Charts include Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu, and Ppk process
capability statistics

SPC Control Named Rule Sets
Western Electric (WECO) Runtime and Supplemental Rules
Nelson
AIAG
Juran
Hughes
Gitlow
Westgard
Duncan

Design Considerations

• Minimal programming required – create SPC charts with a few lines of Javascript code, and
JSON, using our SPC chart templates.

• Integrated frequency histograms support – Display frequency histograms of sampled data,
displayed side-by-side, sharing the same y-axis, with the SPC chart.

• Charts Header Information – Customize the chart display with job specific information, for
example: Title, Operator, Part Number, Specification Limits, Machine, ect.

• Table display of SPC data – Display the sampled and calculated values for a SPC chart in a table,
directly above the associated point in the SPC chart, similar to standardized SPC worksheets.

• Automatic calculation of SPC control limits – Automatically calculate SPC control limits using
sampled data, using industry standard SPC control limit algorithms unique to each chart type.

• Automatic y-Axis scaling – Automatically calculated the y-axis scale for SPC charts, taking into
account sampled and calculated data points, and any control limit lines added to the graph.

• Alarms – When monitored value exceeds a SPC control limit it can trigger an event that vectors
to a user-written alarm processing delegate.

• SPC Process Capability Calculations -Variable Control Charts include Cp, Cpl, Cpu, Cpk, Cpm, Pp,
Ppl, Ppu, and Ppk process capability statistics

• Notes – The operator can view or enter notes specific to a specific sample subgroup using a
special notes tooltip.

• Data tooltips – The operator can view chart data values using a simple drill-down data tooltip
display. The Data tooltips can optionally display sample subgroup data values and statistics,

10 Introduction

including process capability calculations (Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu, and Ppk) and
customized using notes that have been entered for the sample subgroup.

• Scrollable view – Enable the scroll bar option and scroll through the chart and table view of the
SPC data for an unlimited number of sample subgroups.

• Other, optional features – There are many optional features that SPC charts often use, including:

• - Multiple SPC control limits, corresponding to +-1, 2 and 3 sigma limits.

• - Support for named control rule sets: WE, Nelson, AIAG, Juran, Hughes, Duncan, Westgard,
and Gilow

• - Support for custom control rule sets based on our pre-defined templates.

• - Scatter plots of all sampled data values on top of calculated means and medians.

• - Data point annotations

The SPC Control Chart Tools for Javascript is a family of templates that integrate the QCChart2D
charting software with tables, data structures and specialized rendering routines used for the static and
dynamic display of SPC charts. The SPC chart templates are pre-programmed classes that create,
manage and display the graphs and tables corresponding to major SPC control chart types. Each
template can be further customized using a JSON script. The programmers can customize the plot
objects created in the template, allowing tremendous flexibility in the look of the SPC charts.

Like the QCChart2D software, the SPC Control Chart Tools for Javascript uses HTML 5 features
including:

• Resolution independence. HTML 5's emphasis on vector graphics means that programs can be
more easily designed to be independent of the resolution of the output device.

• Arbitrary line thickness and line styles for all lines.
• Gradients, fill patterns and color transparency for solid objects.
• Improved font support for a large number of fonts, using a variety of font styles, size and rotation

attributes.

Web-Based Versions of QCSPCChart
Not counting this, the Javascript version of QCSPCChart, we have four different variants of
QCSPCChart which can be used to display charts in web browsers. Each variant has weaknesses which
prevent it from being a true cross-platform, cross-browser method used to implement a truly interactive
chart.

Web Browser Application Frameworks which are not Javascript

.Net – Using the regular .Net version, you can write ASP.Net applications which run on a server in
headless mode. Headless means that custom chart images are created on demand and converted to jpg or

Introduction 11

png format without being specifically rendered to a server workstation monitor. The converted images
are transferred to the client-side workstation and displayed in an HTML (or Asp .Net equivalent) image
element. The drawback of this techniques is that the chart is not interactive. Data tool tips, editing,
scrolling, and real-time updates are all either limited, or non-existent. Also, the host server is limited to
ones supporting Asp .Net program development. This requires Administrator privileges on the host
server not granted to many developers using shared servers on third party hosts.

Java – Java has a long history of being used to write desktop, server and client side applications. Using
Java, it is possible to write cross platform, client-side web browser applications which render graphics
directly on the local workstation. When a Java application is run in a browser, and the browser host does
not have a Java run-time installed, a workstation specific subset of the Java run-time environment is
downloaded into the client memory, and that run-time is used to execute (interpret) the Java application
program. Unfortunately, it contains many security holes which render it unusable in high security
applications. Even though Sun (the controlling authority behind Java) seems to issue new revisions of
Java weekly to fix old security flaws, new holes seem to appear just as fast. Java is simply to easy for
malicious hackers to subvert. Over the last several years, web browsers have carefully reduced the
number of Java features they support, making it a moving target to write against, since programs which
work under IE 6 may not work under IE8, IE9 and IE10. Modern browsers are turning Java support off
as part of their recommended security settings.

WPF – WPF and Silverlight are very similar. While Silverlight is strictly a framework for writing rich
internet applications, WPF can be used to write applications for both the desktop and the internet. It has
much in common with Silverlight, and both share an XAML-based method of creating the user interface
for an application, and both are normally programmed using a .Net language (C# or VB). They do not
share a common run-time though. So WPF requires a different run-time plug-in than Silverlight. Also,
WPF browser applications will only run on workstations which have a recent version of the .Net run-
time installed. This means it has more limited browser support than Silverlight, with no support of Apple
workstations, no support for Linux, and no support for mobile applications (IOS and Android). There are
also rumors that Microsoft is placing WPF in the same no further development category as Silverlight.

Silverlight – Silverlight was intended to be Microsoft's answer to Java as a client-side programming
language for web browser applications. First introduced in 2007, its most recent version is Version 5.0,
released in 2011. Silverlight run-time plug-ins are available for browsers running on Windows and OSX
(Apple) based workstations. Silverlight was a significant innovation for Microsoft. It does provide a
very powerful application framework for writing rich internet applications. Unfortunate, early attempts
(Moonlight) to port the run-time to Linux-based browsers have been abandoned. Also, no plug-ins were
ever created for browsers running on mobile devices running IOS (Apple) and Android (Google). Even
Microsoft's own Mobile phone does not support Silverlight. The general consensus is that Microsoft has
stopped development work on Silverlight. They will probably support it for years to come, because of
the large installed base, but it is a dead end development-wise.

QCSPCChart for Javascript
So, how do you combine these elements: the QCSPCChart software, GWT, and your web site. First, we
have compiled the QCSPCChart software, using GWT, into the various browser specific components.
All of the compiler output is found in a folder named QCSPCChartGWTWar. Also in that folder is one

12 Introduction

or more HTML files. You would place a copy that folder on your web site, probably in the root of the
web site, though that does not have to be the case.

All of the examples, SPCSimple.html for example, have a block of standardized code in the header
section used to invoke the GWT generated Javascript files making up QCSPCChart. This block of code
looks like:

 <script type="text/Javascript" language="Javascript"
src="qcspcchart gwt /qcspcchartgwt.nocache.js"></script>

When the web page is loaded, this line of code is executed and everything else cascades from there.

You will need to define a chart. This is done using a JSON construct as described earlier. We use a
simple data format, compatible with JSON, and Javascript data structures. That structure sets the
properties of the chart you want to create. Most all of the hundreds of properties are optional and if you
don't set a property it is assigned a default value. In our main example, SPCExampleScripts, we have
created Javascript objects for each of the main chart types supported by the software. Some include data
initialization using actual data values, others use simulated data. Some use the integrated table above the
charts, others do not. Below is a chart script for a minimal IR chart.

 var TimeIR =
{
 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "INDIVIDUAL_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 1,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

 "UseNoTable": {
 "PrimaryChart": true,
 "SecondaryChart": true,
 "Histograms": true,
 "Title": "Individual Range Chart Part XKY"
 },
 "SampleData": {
 "DataSimulation": {

 "StartCount": 0,
 "Count": 50,
 "Mean": 27.5,
 "Range": 5

 }
 },
 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true
 }
}

Introduction 13

 };

Simple JSON Formatting Rules in a Nutshell

The left-hand side, or property name, of of each Property/Value pair is always a string, represented as
quoted text: "SPCChart", "InitChartProperties", "SPCChartType", "ChartMode", etc. The right-hand
side can have several different formats, depending on the context. If the property value is a JSON
numeric value, it is represented without quotes, for both real and integer (50, 27.5, 5). If the property
value is a JSON boolean value, it is represented as either true or false, without quotes. If the property
value is a string, it is represented using a quoted text ("Individual Range Chart Part XKY"). If the
property value is a QCSPCChart constant ("INDIVIDUAL_RANGE_CHART") it is also represented
using quoted text. A property can also be the parent of a subgroup of Property/Values pairs ,
"InitChartProperties" for example. In that the subgroup is bracket in {..}. Also, a property can represent
an array of values, in which cast the values are braketed by [..]. You will see examples of that later. So
in summary:

Property Name (left hand side) Always in quotes
Numeric values (right hand side) A number with no quotes
Boolean values (right hand side) true or false, no quotes
String values (right hand side) Text in quotes
An array (right hand side) Comma separated values surrounded by brackets [..]
Another child block Surrounded in curly brackets {.. }

The "InitChartProperties" block defines the SPC chart type (Individual Range), the mode (Time or
Batch), the number of samples per sub group (always one for an IR chart) and the number of data points
in the view, and the time increment between adjacent samples. If you wanted to initialize a Batch
version of the same chart, the only thing which would change would be :

 "InitChartProperties": {
 "SPCChartType": "INDIVIDUAL_RANGE_CHART",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 1,
 "NumDatapointsInView": 12,

 },

The ChartMode has been changed to "Batch" and the TimeIncrementMinutes has been removed,
since it doesn't apply to a batch chart.

The "UseNoTable" block is a utility to remove the entire table, and to just set the most common default
properties for the chart in general. You can enable/disable the display of the primary chart, secondary
chart, the histograms and the title.

"UseNoTable": {
 "PrimaryChart": true,
 "SecondaryChart": true,
 "Histograms": true,
 "Title": "Individual Range Chart Part XKY"

14 Introduction

},

Data is simulated. The parameters for the simulation simulated in the "DataSimulation" block, under
"SampleData".

"SampleData": {
 "DataSimulation": {
 "StartCount": 0,
 "Count": 50,
 "Mean": 27,
 "Range": 5
 }
}

Fifty sample values are simulated, with a mean of 27 and a range of 5. If you want so substitute real
values, then the block would look something like this:

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214

],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },
 {
 "SampleValues": [
 35.21321620109259,
],
 "BatchCount": 2,
 "TimeStamp": 1371832629074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.898302097237174
],
 "BatchCount": 3,
 "TimeStamp": 1371833529074,
 "Note": ""
 },
 {
 "SampleValues": [

Introduction 15

 22.94549873989527,
],
 "BatchCount": 4,
 "TimeStamp": 1371834429074,
 "Note": ""
 },

.

.

.
 {

 "SampleValues": [
 22.94549873989527,
],
 "BatchCount": 49,
 "TimeStamp": 1371834429074,
 "Note": ""
 }

]
}

Note that the SampleIntervalRecords block is an array of child blocks, and within each element of that
array, there is another array, SampleValues, which is an array of numeric values, representing sample
data.

The last block, "Methods", is a list methods which can be executed after the "SampleData" block is
processed. These items represent methods for auto-calculating control limits, auto-scaling the y-axes of
the charts, and the rebuilding of the chart taking into account new values.

There are many more options you can set in the defining JSON script. You can create the chart using
one JSON script, and update it using another. You can reset the sample values back to empty, and run a
new set of data through the chart. Subsequent chapters in the manual go into more detail about the
available options.

Dynamic Creation of JSON

Typically, the chart creation JSON script will be static, or nearly static. That means you can hand-code a
template for a specific application. You can customize specific properties of the template using standard
Javascript programming. For example, you start with the TimeXBarR example from the
chartdefSimple.js file. All of the property values of the TimeXBarR record variable are filled-out with
default values. But now you want to customize it a bit. You can use standard Javascript to do that,
referencing the fields of the TimeXBarR record variable.

 function defineChartUsingJSON()
 {
 TimeXBarR.SPCChart.TableSetup.ChartData.Title = "QC Mean Range Chart";
 TimeXBarR.SPCChart.TableSetup.ChartData.PartNumber = "122";
 TimeXBarR.SPCChart.TableSetup.ChartData.ChartNumber = "3";
 TimeXBarR.SPCChart.TableSetup.ChartData.PartName = "Widget X23";

16 Introduction

 TimeXBarR.SPCChart.TableSetup.ChartData.Operation = "Flange Drilling";
 TimeXBarR.SPCChart.TableSetup.ChartData.Operator = "Mike Holtzman";

 var s = JSON.stringify(TimeXBarR);
 return s;
 }

Data updates, using the SampleData.SampleIntervalRecords property involves appending new elements
to an already existing array. Use the Javascript push function to do that. In the example below, all of the
sample data is stored as an array of records within
TimeXBarR.SPCChart.SampleData.SampleIntervalRecords. Each element of SampleIntervalRecords
contains a structure which contains a SampleValues array, which is an array of values, one for each
sample of a sample interval. So an array of SampleValues is created, and populated with sample data for
a sample interval. That array is combined with BatchCount, TimeStamp, and Note data values in a
SampleIntervalRecord, and that records is appended at the end of
TimeXBarR.SPCChart.SampleData.SampleIntervalRecords using push.

function defineChartUsingJSON()
 {
 var SampleIntervalRecord = {
 "SampleValues": [],

 "BatchCount": 0,
 "TimeStamp": 1371830829074 + 20 * 900000,
 "Note": "" };

 var SampleValues = new Array();

 SampleValues.push(27.53131515148628);
 SampleValues.push(33.95771604022404);
 SampleValues.push(24.310097827061817);
 SampleValues.push(28.282642847792765);
 SampleValues.push(30.2908518818265);

 SampleIntervalRecord.SampleValues = SampleValues;
 TimeXBarR.SPCChart.SampleData.SampleIntervalRecords.push(SampleIntervalRecord);

 var s = JSON.stringify(TimeXBarR);
 return s;
 }

JSON and Web Services

JSON is also widely used in what are called web services, or communication between a client and a
server. JSON is used as the message system, encapsulating data structures in simple text which can be
easily converted to and from Javascript, without having to write dedicated parsers. It replaces XML data
formats in many instances. While JSON is not as flexible or as all encompassing as XML, it does have
many advantages. JSON is generally faster, less verbose, and easier to read in raw form. You probably
use a JSON web service everyday, because Google uses it to transfer data to and from their ubiquitous
web search edit box, offering up full-word selections even as you are still typing in letters.

Introduction 17

All of the examples we use in the software assume that the chart defining JSON scripts are either present
on the server in the form of Javascript include files, or, they are generated dynamically by our library, as
in the case of simulated data, or they are generated dynamically in the HTML web page using
Javascript. Another possibility is that the application program on the server generate JSON scripts and
send them directly to the client HTML page using web services, most likely using some variant of Ajax
technologies. Server-side implementations of this are going to be unique to the server. Linux-based
servers are probably going to use Java Servlets to serve up JSON scripts, while Microsoft-based servers
are probably going to use one of their .Net-based web service libraries, of which they have a confusing
assortment. On the server end, there are libraries for every server programming language which will aid
you in creating dynamic JSON scripts. On the client end, you can stick with Javascript, and the jQuery
utility library.

This subject is not directly related to QCSPCChart library though. The QCSPCChart library assumes
you can obtain JSON formatted scripts, in string format, readable by our library. How you do that is up
to you. If you want to experiment with sending and receiving JSON scripts using JSON Web services,
that can be done without our library. Once you can successfully send and receive the scripts, then you
can introduce our library and start displaying the charts the scripts define in the web page.

You will find a simple example which uses the jQuery.Ajax function ($.Ajax) to communicate with a
PHP script running on a server in Chapter 20. It assumes that you PHP running on your server.

Important Javascript vs JSON Considerations

In the example above, a Javascript structure, which will be converted to a JSON string using
JSON.stringify, is manipulated as a standard Javascript object. If you have long programmed Javascript,
you may expect to see the property (or key) names on the left side of the colon to be defined without
quotes. The SampleIntervalRecord declaration becomes:

 var SampleIntervalRecord = {
 SampleValues: [],

 BatchCount: 0,
 TimeStamp: 1371830829074 + 20 * 900000,
 Note: "" };

where the property names on the left side of the colon are not quoted. This will work in many cases.
The actual JSON script is the output of the JSON.stringify function. That function will take the unquoted
property names and surround them in quotes as part of the conversion from a Javascript object into a
formatted JSON string. If the property names are surrounded by quotes, it just leaves them alone.

Regardless of how you define the property names (with or without quotes), you can still access the
property values using standard Javascript dot notation:

var samplevalue =
 TimeXBarR.SPCChart.SampleData.SampleIntervalRecords.SampleValues[0];

18 Introduction

You will find that 100% of our examples declare the property names using quotes. Because if you do
not use quotes, the Javascript/JSON code cannot be checked using a JSON validator, such as
http:// jsonlint .com/ . The standard definition of JSON uses quoted property names.

How to Pass the JSON Script into the QCSPCChart Library

Once the chart defining JSON script is created, you need a means of passing the script into the
QCSPCChart library. There are several ways of doing this. The first method is to place the Javascript
function defineChartUsingJSON, in a copy of the skeleton HTML file, QCSPCSkeleton.html. Start
with your own copy of the QCSPCSkeleton.html (rename it anything you want) so that you have the
important code needed to initialize the parts dependent on GWT. This function should take the
Javascript JSON object, convert it to a string using the JSON stringify function, and return the resulting
string value. The QCSPCSkeleton.html already includes the defineChartUsingJSON function, so just
pretend you copy it into that file.

 <!-- -->
 <!--Specify the chart defining javascript file containing JSON script -->
 <!-- -->

 <script src="chartdefUserDefined.js"></script>

 <script>

 function defineChartUsingJSON()
 {
 var s = JSON.stringify(TimeXBarR);
 return s;
 }

 </script>

When the QCSPCChart library starts, it looks to see if the function defineChartUsingJSON is in the
parent HTML file (QCSPCSkeleton .html in this case). If it is, it executes the function, and processes the
JSON script which is returned. If it isn't found, nothing bad happens, the library just waits until some
other chart defining event occurs. This is the best technique to use if you want a default chart to load
when the web page is loaded.

A second technique is to push a JSON chart definition into the QCSPCChart library. This requires some
HTML element to trigger an event, which then calls a Javascript function, which then pushes a JSON
script into the QCSPCChart library by calling the function pushJSONChartCreate. The
pushJSONChartCreate function is an un-obfuscated Javascript function exported from the
QCSPCChartGWT libray, so that you can call it from within the main HTML page. In the
SPCExampleScripts.html example, we set the default chart on the web page using
defineChartUsingJSON, and then we let you change the default by selecting a new chart from a drop
down list, implemented using an HTML select item. Selecting a new chart using the drop down select
element triggers an event, which calls the displayChart function. Using the passed in value of the

http://jsonlint.com/
http://jsonlint.com/
http://jsonlint.com/

Introduction 19

chartid variable, the defining chart JSON script is retrieved using getChartItem, and then that script is
converted to a string and passed into the pushJSONChartCreate function.

function displayChart(chartid) {
 var chartitem = getChartItem(chartid);
 pushJSONChartCreate(JSON.stringify(chartitem));
}

Chapter 15 and the tutorial in Chapter 20 discuss these techniques in more detail.

Directory Structure of QCSPCChart for Javascript

The SPC Control Chart Tools for Javascript class library uses the standard directory structure also
used by the QCChart2D and QCRTGraphics software. It adds the QCSPCChart directory structure
under the Quinn-Curtis\DotNet folder. For a list of the folders specific to QCChart2D, see the manual
for QCChart2D, QCChart2DJavascriptManual.pdf.

Drive:

Quinn-Curtis\ - Root directory

GWTJavascript\ - Quinn-Curtis GWT / Javascript folder

Docs\ - documentation directory

 QCSPCChartGWTDoc.pdf – This document, the User guide

QCSPCChartGWTWar\ - The redistributable folder for deployment

qcspcchartgwt\ – this folder contains the compiled, chached, Javascript libraries for
QCSPCChartGWT. There are at least six different version of the
libraries optimized for the HTML5 support in the major browsers
(IE, Firefox, Chrome, and Safari).

SPCSimple.html – a simple example HTML page representing a Javascript program
displying a single SPC Chart (X-Bar R).

ChartdefSimple.js – contains the Javascript/JSON definition of the chart referenced in
the SPCSimple.html web page.

SPCMediumSimple.html – a medium-simple example HTML page representing a
Javascript program displaying a single SPC Chart (X-Bar R) with
real-time updates from JSON objects, alarm processing, and
retrieving overall SPC statistics from the chart.

20 Introduction

ChartdefMediumSimple.js – contains the Javascript/JSON definition of the chart
referenced in the SPCMediumSimple.html web page.

MediumSimpleDataUpdate.js – contains the Javascript/JSON definition of the data
update used in the SPCMediumSimple.html example.

SPCComplex.html – a complicated example HTML page representing a Javascript
program displaying a single SPC Chart (X-Bar R), WECO rules,
simulated data updates, alarm processing, and retrieving overall
SPC statistics from the chart, retrieving point specific SPC
statistics, and processing mouse clicks and adding an annotation to
the chart.

ChartdefComplex.js – contains the Javascript/JSON definition of the chart referenced
in the SPCComplex.html web page.

SPCExampleScripts.html – a complicated example program which lets you select
from a list of over 40 different SPC charts.

ChartdefExampleScripts.js – contains the Javascript/JSON definitions of the charts
referenced in the SPCExampleScripts.html web page.

QCSPCSkeleton.html – the shell of a simple example you can use to build your own
application. It's the same code as the SPCSimple.html page.

ChartdefUserDefined.js – an example X-Bar R script. It's the same as the
ChartdefSimple.js script.

QCSPCChartGWT.css – a css style sheet controlling some of the default
characteristics of the chart

There are two versions of the for SPC Control Chart Tools for Javascript class library: the 30-day
trial versions, and the developer version. Each version has different characteristics that are summarized
below:

30-Day Trial Version

The trial version of SPC Control Chart Tools for Javascript is downloaded in a file named
Trial_QCSPCChartJSR22x. The 30-day trial version stops working 30 days after the initial download.
The trial version includes a version message in the upper left corner of the graph window that cannot be
removed.

Developer Version

The developer version of SPC Control Chart Tools for Javascript is downloaded in a file with a name
similar to JSSPCDEV1UR2x2x561x1.zip The developer version does not time out and you can use it to
create web pages for web sites. You can download free updates for a period of 2-years. When you
placed your order, you were e-mailed download link(s) that will download the software. Those

Introduction 21

download links will remain active for at least 2 years and should be used to download current versions
of the software. After 2 years you may have to purchase an upgrade to continue to download current
versions of the software.

Tutorials
Chapter 20 is a tutorial that describes how to define a simple chart and deploy it to a web page.

Customer Support
Use our forums at http://www.quinn-curtis.com/ForumFrame.htm for customer support. Please, do not
post questions on the forum unless you are familiar with this manual and have run the examples
programs provided. We try to answer most questions by referring to the manual, or to existing example
programs. We will always attempt to answer any question that you may post, but be prepared that we
may ask you to create, and send to us, a simple example program. The program should reproduce the
problem with no, or minimal interaction, from the user. You should strip out of any code not directly
associated with reproducing the problem. You can use either your own example or a modified version of
one of our own examples.

Chapter Summary
The remaining chapters of this book discuss the SPC Control Chart Tools for Javascript package.

Chapter 2 - Standard SPC Control Charts - presents a summary of the standard SPC control charts that
can be created using the software.

Chapter 3 – Overview of JSON Scripting of SPC Charts – summarizes how SPC charts are defined
using a JSON scripting lauguage.

Chapter 4 – Static Property Initialization - describes static properties which can be initialized using
JSON scripting.

Chapter 5 - SPC Inital Chart Setup - describes the initial setup of an SPC chart.

Chapter 6 – SPC Data Table Setup – the setup of the optional SPC chart data table.

Chapter 7 – SPC Chart Setup - describes setup options for the SPC charts.

Chapter 8 – Adding Data to an SPC Chart – describes techniques for adding data to an SPC chart.

Chapter 9 – Calculate and Update Methods – describes methods for the auto-calculation of control
parameters, and the update of the display.

http://www.quinn-curtis.com/ForumFrame.htm

22 Introduction

Chapter 10 – Variable Control Charts - describes options associated with variable control SPC Charts.

Chapter 11 – Attribute Control Charts - describes options associated with attribute control SPC Charts.

Chapter 12 - Process Capability Ratios and Process Performance Indices - describes how to enable the
calculation of - Process Capability Ratios and Process Performance Indices .

Chapter 13 - Named and Custom Control Rule Sets – describes how to setup and modify the control
rules of popular SPC control chart rule sets.

Chapter 14 - Event Handling for Alarms and Tooltips – explains how to process control limit alarms,
and create custom data tooltips and annotations using Javascript.

Chapter 15 - JSNI Calls into the QCSPCChart Library – how to call utility functions in the library from
Javascript.

Chapter 16 – Cascading Style Sheets (CSS) – setting the default font and background color of the charts
using cascading style sheet parameters.

Chapter 17 – Frequency Histograms – how to create a standalone frequency histogram.

Chapter 18 – Pareto Chart – how to create a standalone Pareto chart.

Chapter 19 - Regionalization for non-USA English Markets – how to customize the software for non-
USA markets.

Chapter 20 - Using SPC Control Chart Tools for Javascript to Create Web Applications - implementing
a web site.

2. Standard SPC Control Charts

Variable Control Charts
Attribute Control Charts
Other Important SPC Charts

There are many different types SPC control charts. Normally they fall into one of two major
classifications: Variable Control Charts, and Attribute Control Charts. Within each classification, there
are many sub variants. Often times the same SPC chart type has two or even three different names,
depending on the software package and/or the industry the chart is used in. We have provided templates
for the following SPC control charts:

Variable Control Charts Templates
Fixed sample size subgroup control charts

X-Bar R – (Mean and Range Chart)
X-Bar Sigma (Mean and Sigma Chart)
Median and Range (Median and Range Chart)
X-R (Individual Range Chart)
EWMA (Exponentially Weighted Moving Average Chart)
MA (Moving Average Chart)
MAMR (Moving Average / Moving Range Chart)
MAMS (Moving Average / Moving Sigma Chart)
CuSum (Tabular Cumulative Sum Chart)

Variable sample size subgroup control charts
X-Bar Sigma (Mean and Sigma Chart)

Attribute Control Charts Templates
Fixed sample size subgroup control charts

p Chart (Fraction or Percent of Defective Parts)
np Chart (Number of Defective Parts)
c-Chart (Number of Defects)
u-Chart (Number of Defects per Unit)
Number Defects per Million (DPMO)

Variable sample size subgroup control charts
p Chart (Fraction or Percent of Defective Parts)
u-Chart (Number of Defects per Unit)

Time-Based and Batch-Based SPC Charts

We have further categorized Variable Control charts and Attribute Control Charts as either time- or
batch- based. While you may not find this distinction in SPC textbooks (we didn’t), it makes sense to us
as charting experts. Quality engineers use time-based SPC charts when data is collected using a
subgroup interval corresponding to a specific time interval. They use batch-based SPC charts when the

24

data subgroup interval is a sequential batch number that does not correspond to a uniform time interval.
The major difference in these two types of SPC charts is the display of the x-axis. Variable control
charts that sample using a uniform time interval will generally use a time-based x-axis, with time/date
axis labels. Variable control charts that sample based on batches will generally use a numeric-based x-
axis, with numeric axis labels.

Note: Starting with Revision 2.0, batch control charts can label the x-axis using one of three options:
numeric labeling (the original and default mode), time stamp labeling, and user defined string labeling.
Since this affects batch control charts, time stamps to not have to be equally spaced, or even sequential.

Variable Control Charts

Variable Control Charts are for use with sampled quality data that can be assigned a specific numeric
value, other than just 0 or 1. This might include, but is not limited to, the measurement of a critical
dimension (height, length, width, radius, etc.), the weight a specific component, or the measurement of
an important voltage. Common types of Variable Control Charts include X-Bar R (Mean and Range),
X-Bar Sigma, Median and Range, X-R (Individual Range), EWMA, MA, MAMR (Moving
Average/Moving Range), MAMS (Moving Average/Moving Sigma) and CuSum charts.

Typical Time-Base Variable Control Chart (X-Bar R) with header information

X-Bar R Chart – Also known as the Mean (or Average) and Range Chart

The X-Bar R chart monitors the trend of a critical process variable over time using a statistical sampling
method that results in a subgroup of values at each subgroup interval. The X-Bar part of the chart plots
the mean of each sample subgroup and the Range part of the chart monitors the difference between the
minimum and maximum value in the subgroup.

X-Bar Sigma Chart

Very similar to the X-Bar R Chart, the X-Bar Sigma chart replaces the Range plot with a Sigma plot
based on the standard deviation of the measured values within each subgroup. This is a more accurate
way of establishing control limits if the sample size of the subgroup is moderately large (> 10). Though
computationally more complicated, the use of a computer makes this a non-issue.

25

Fixed sample size X-Bar Sigma Control chart with header information

The X-Bar Sigma chart can also be used if the sample subgroup size varies from sampling interval to
sampling interval. In this case, the control chart high and low limits vary from sample interval to sample
interval, depending on the number of samples in the associated sample subgroup. A low number of
samples in the sample subgroup make the band between the high and low limits wider than if a higher
number of samples are available. The X-Bar Sigma chart is the only variable control chart that can be
used with a variable sample size.

26

 X-Bar Sigma Chart with variable sample size

Median Range – Also known as the Median and Range Chart

Very similar to the X-Bar R Chart, Median Range chart replaces the Mean plot with a Median plot
representing the median of the measured values within each subgroup. The Median Range chart requires
that the process be well behaved, where the variation in measured variables are (1) known to be
distributed normally, (2) are not very often disturbed by assignable causes, and (3) are easily adjusted.

27

Typical Time-Based Individual Range Chart (X-R)

Individual Range Chart – Also known as the X-R Chart

The Individual Range Chart is used when the sample size for a subgroup is 1. This happens frequently
when the inspection and collection of data for quality control purposes is automated and 100% of the
units manufactured are analyzed. It also happens when the production rate is low and it is inconvenient
to have sample sizes other than 1. The X part of the control chart plots the actual sampled value (not a
mean or median) for each unit and the R part of the control chart plots a moving range, calculated using
the current value of sampled value minus the previous value.

28

Typical EWMA Chart using Batch Sampling

EWMA Chart – Exponentially Weighted Moving Average

The EWMA chart is an alternative to the preceding Shewhart type control charts (X-Bar R and I-R
charts in particular) and is most useful for detecting small shifts in the process mean. It uses a weighted
moving average of previous values to "smooth" the incoming data, minimizing the affect of random
noise on the process. It weights the current and most recent values more heavily than older values,
allowing the control line to react faster than a simple MA (Moving Average) plot to changes in the
process. Like the Shewhart charts, if the EWMA value exceeds the calculated control limits, the process
is considered out of control. While it is usually used where the process uses 100% inspection and the
sample subgroup size is 1 (same is the I-R chart), it can also be used when sample subgroup sizes are
greater than one.

29

MA Chart – Moving Average

MA (Moving Average) Chart with Sample Values Plotted

The MA chart is another alternative to the preceding Shewhart type control charts (X-Bar R and I-R
charts in particular) and is most useful for detecting small shifts in the process mean. It uses a moving
average, where the previous (N-1) sample values of the process variable are averaged together along
with the process value to produce the current chart value. This helps to "smooth" the incoming data,
minimizing the affect of random noise on the process. Unlike the EWMA chart, the MA chart weights
the current and previous (N-1) values equally in the average. While the MA chart can often detect small
changes in the process mean faster than the Shewhart chart types, it is generally considered inferior to
the EWMA chart. Like the Shewhart charts, if the MA value exceeds the calculated control limits, the
process is considered out of control.

30

MAMR Chart – Moving Average / Moving Range

MAMR (Moving Average/Moving Range) Chart with Sample Values Plotted

The MAMR chart combines our Moving Average chart with a Moving Range chart. The Moving
Average chart is primary (topmost) chart, and the Moving Range chart is the secondary (bottom) chart.
It uses a single sample/subgroup, same as our standard [Individual-Range], [Moving Average],
[EWMA], and [Moving Average] charts. When calculating the Moving Range, it windows the same data
values used in the Moving Average calculation. Note that the limits are variable (wider) at the
beginning, taking into account the fewer samples in the start up of any type of SPC chart which uses a
sliding window in the calculation of moving average and moving range statistics.

31

MAMS Chart – Moving Average / Moving Sigma

MAMS (Moving Average/Moving Sigma) Chart with Sample Values Plotted

The MAMS chart combines our Moving Average chart with a Moving Sigma chart. The Moving
Average chart is primary (topmost) chart, and the Moving Sigma chart is the secondary (bottom) chart.
It uses a single sample/subgroup, same as our standard [Individual-Range], [Moving Average],
[EWMA], and [Moving Average] charts. When calculating the Moving Sigma, it windows the same data
values used in the Moving Average calculation. Note that the limits are variable (wider) at the
beginning, taking into account the fewer samples in the start up of any type of SPC chart which uses a
sliding window in the calculation of moving average and moving sigma statistics.

32

Tabular CuSum Chart

CuSum Chart – Tabular, one-sided, upper and lower cumulative sum

The CuSum chart is a specialized control chart, which like the EWMA and MA charts, is considered to
be more efficient that the Shewhart charts at detecting small shifts in the process mean, particularly if
the mean shift is less than 2 sigma. There are several types of CuSum charts, but the easiest to use and
the most accurate is considered the tabular CuSum chart and that is the one implemented in this
software. The tabular cusum works by accumulating deviations that are above the process mean in one
statistic (C+) and accumulating deviations below the process mean in a second statistic (C-). If either
statistic (C+ or C-) falls outside of the calculated limits, the process is considered out of control.

33

Measured Data and Calculated Value Tables

Standard worksheets used to gather and plot SPC data consist of three main parts.

• The first part is the header section, identifying the title of the chart, the monitored process, the
machine operator, part number and other important information specific to the chart.

• The second part is the measurement data recording and calculation section, organized as a table,
recording the sampled and calculated data in a neat, readable fashion.

• The third part, the actual SPC chart, plots the calculated SPC values for the sample group

The Variable Control Chart templates that we have created have options that enable the programmer to
customize and automatically include header information along with a table of the measurement and
calculated data, in the SPC chart. Enable the scrollbar option and you can display the tabular
measurement data and SPC plots for a window of 8-20 subgroups, from a much larger collection of
measurement data represented hundreds or even thousands of subgroups, and use the scrollbar to move
through the data, similar to paging through a spreadsheet.

34

Scrollable Time-Based XBar-R Chart with frequency histograms and basic header information

35

Scrollable Batch-Based XBar-R Chart with frequency histograms, header, measurement and calculated
value information

Scatter Plots of the Actual Sampled Data

In some cases it useful to plot the actual values of a sample subgroup along with the sample subgroup
mean or median. Plot these samples in the SPC chart using additional scatter plots.

36

Scrollable Time-Based XBar-R Chart with Scatter Plot of Actual Sampled Data

Alarm Notification

Typically, when a process value exceeds a control limit, an alarm condition exists. In order to make sure
that the program user identifies an alarm you can emphasize the alarm in several different ways. You
can trap the alarm condition using an event delegate, log the alarm to the notes log, highlight the data
point symbol in the chart where the alarm occurs, display an alarm status line in the data table, or
highlight the entire column of the sample interval where the alarm occurs.

37

Change the color of a data point that falls outside of alarm limits.

Highlight the column of the sample interval where the alarm occurs

38

An alarm status line highlights an alarm condition, and lets you know when chart the (primary or
secondary) the alarm occurs in.

These alarm highlight features apply to both variable control and attribute control charts.

39

Attribute Control Charts
Attribute Control Charts are a set of control charts specifically designed for tracking defects (also called
non-conformities). These types of defects are binary in nature (yes/no), where a part has one or more
defects, or it doesn’t. Examples of defects are paint scratches, discolorations, breaks in the weave of a
textile, dents, cuts, etc. Think of the last car that you bought. The defects in each sample group are
counted and run through some statistical calculations. Depending on the type of Attribute Control Chart,
the number of defective parts are tracked (p-chart and np-chart), or alternatively, the number of defects
are tracked (u-chart, c-chart). The difference in terminology "number of defective parts" and "number of
defects" is highly significant, since a single part not only can have multiple defect categories (scratch,
color, dent, etc), it can also have multiple defects per category. A single part may have 0 – N defects. So
keeping track of the number of defective parts is statistically different from keeping track of the number
of defects. This affects the way the control limits for each chart are calculated.

40

Typical Time-Based Attribute Control Chart (p-Chart)

p-Chart - Also known as the Percent or Fraction Defective Parts Chart

For a sample subgroup, the number of defective parts is measured and plotted as either a percentage of
the total subgroup sample size, or a fraction of the total subgroup sample size. Since the plotted value is
a fraction or percent of the sample subgroup size, the size of the sample group can vary without
rendering the chart useless.

The p-Chart chart can also be used if the sample subgroup size varies from sampling interval to
sampling interval. In this case, the control chart high and low limits vary from sample interval to sample
interval, depending on the number of samples in the associated sample subgroup. A low number of
samples in the sample subgroup make the band between the high and low limits wider than if a higher

41

number of samples are available. Both the Fraction Defective Parts and Percent Defective Parts control
charts come in versions that support variable sample sized for a subgroup.

Fraction Defective Parts (p-Chart) with variable sample size

np-Chart – Also known as the Number Defective Parts Chart

For a sample subgroup, the number of defective parts is measured and plotted as a simple count.
Statistically, in order to compare number of defective parts for one subgroup with the other subgroups,
this type of chart requires that the subgroup sample size is fixed across all subgroups.

42

Typical Number of Defects (c)

c-Chart - Also known as the Number of Defects or Number of Non-Conformities
Chart

For a sample subgroup, the number of times a defect occurs is measured and plotted as a simple count.
Statistically, in order to compare number of defects for one subgroup with the other subgroups, this type
of chart requires that the subgroup sample size is fixed across all subgroups.

u-Chart – Also known as the Number of Defects per Unit or Number of Non-
Conformities per Unit Chart

For a sample subgroup, the number of times a defect occurs is measured and plotted as either a
percentage of the total subgroup sample size, or a fraction of the total subgroup sample size. Since the

43

plotted value is a fraction or percent of the sample subgroup size, the size of the sample group can vary
without rendering the chart useless.

The u-Chart chart can also be used if the sample subgroup size varies from sampling interval to
sampling interval. In this case, the control chart high and low limits vary from sample interval to sample
interval, depending on the number of samples in the associated sample subgroup. A low number of
samples in the sample subgroup make the band between the high and low limits wider than if a higher
number of samples are available.

44

DPMO Chart – Also known as the Number of Defects per Million Chart

This Attribute Control chart is a combination of the u-chart and the c-chart. The chart normalizes the
defect rate, expressing it as defects per million. The chart displays the defect rate as defects per million.
The table above gives the defect count in both absolute terms, and in the normalized defects per million
used by the chart.

Defect and Defect Category Data Tables

As discussed under the Variable Control Chart section, standard worksheets used to gather and plot SPC
data consist of three main parts.
The first part is the header section, identifying the title of the chart, the monitored process, the

machine operator, part number and other important information specific to the chart.
The second part records the defect data, organized as a table recording the defect data and SPC

calculations in a neat, readable fashion.
The third part plots the calculated SPC values in the actual SPC chart.

The Attribute Control Chart templates that we have created have options that enable the programmer to
customize and automatically include header information along with a table of the defect data, organized
by defect category, number of defective parts, or total number of defects. Enable the scrollbar and you
can display the tabular defect data and SPC plots for a window of 8-20 subgroups, from a much larger

45

collection of measurement data representing hundreds or even thousands of subgroups, and use the
scrollbar to move through the data, similar to paging through a spreadsheet.

Typical Number of Defects (c) Chart with data table

Other Important SPC Charts

Frequency Histogram Chart

An SPC control chart tacks the trend of critical variables in a production environment. It is important
that the production engineer understand whether or not changes or variation in the critical variables are
natural variations due to the tolerances inherent to the production machinery, or whether or not the
variations are due to some systemic, assignable cause that needs to be addressed. If the changes in
critical variables are the result of natural variations, a frequency histogram of the variations will usually
follow one of the common continuous (normal, exponential, gamma, Weibull) or discrete (binomial,
Poisson, hypergeometric) distributions. It is the job of the SPC engineer to know what distribution best
models his process. Periodically plotting of the variation of critical variables will give SPC engineer
important information about the current state of the process. A typical frequency histogram looks like:

46

Frequency Histogram Chart

Viewing frequency histograms of both the variation in the primary variable (Mean, Median, count, or
actual value), and the secondary variable (Range, Sigma or Moving Range) side-by-side with the SPC
control chart makes it even easier to find out whether the variations are the result of natural variations or
the result of some systemic change in the process.

47

XBar-Sigma Chart with Integral Frequency Histograms

Pareto Diagrams

The Pareto diagram is a special type of bar graph combined with a line plot, plotted in a chart that uses
two different y-axis scales. The bar graph scale is a frequency scale that measures the number of times a
specific problem has occurred. The line plot scale is a cumulative percentage scale.

48

Pareto Chart

The chart is easy to interpret. The tallest bar, the left-most one in a Pareto diagram, is the problem that
has the most frequent occurrence. The shortest bar, the right-most one, is the problem that has the least
frequent occurrence. Time spend on fixing the biggest problem will have the greatest affect on the
overall problem rate. This is a simplistic view of actual Pareto analysis, which would usually take into
account the cost effectiveness of fixing a specific problem. Never less, it is powerful communication
tool that the SPC engineer can use in trying to identify and solve production problems.

3. Overview of JSON Scripting of SPC Charts
Top Level
Secondary Level
Third Level
SPCChartStrings Listing

Top Level

StaticProperties
SPCChart
FrequencyHistogram
ParetoChart

Secondary Level

StaticProperties
Canvas

Width
Height

DefaultFontName
DefaultTableFont
DefaultAlarmColors
SPCChartStrings
DefaultChartFonts
ControlLimitLabelFont");
 .
 .
 .

TimeValueRowHeader
AlarmStatusValueRowHeader
NumberSamplesValueRowHeader
TitleHeader
PartNumberHeader
ChartNumberHeader
PartNameHeader
OperationHeader
OperatorHeader

 .
 .
 .

 There are 125 static strings constants you can set
SPCChart

InitChartProperties
ChartPositioning
Scrollbar

50

UseNoTable
TableSetup
MiscChartDataProperties
PrimaryChartSetup
SecondaryChartSetup
Events
SampleData
SecondaryChartSetup
Methods

FrequencyHistogram
ChartSetup
FrequencyHistogramData
Methods

ParetoChart
ChartSetup
ParetoChartData
Methods

Third Level

At this level you will see all of the properties, object types, and default values if appropriate.

Our indented, hierarchical description of the JSON scripting language for the SPCChart software is
slightly different that they way the JSON will look in your actual program. The following conventions
are followed.

Out description of a JSON property includes the property name, the property type, and a default value if
appropriate. The SPCChartType definition looks like:

SPCChartType: SPC String constant: "MEAN_RANGE_CHART"

where 'SPCChartType' is the property name, 'SPC String constant' is the property type, and
"MEAN_RANGE_CHART" is the default value.

In actual JSON code, all object names (objects on the left side of the colon ":", are strings and are
surrounded by quotes. The description block for InitChartProperties:

InitChartProperties
SPCChartType: SPC String constant: "MEAN_RANGE_CHART"
ChartMode: SPC String constant: "Batch"
NumSamplesPerSubgroup: integer: 5
NumCategoriesPerSubgroup: integer: 5
NumDatapointsInView: integer: 15
CuSumKValue: double: 0.5
CuSumHValue: double: 5
CuSumMeanValue:double: 10

is coded in JSON as:

51

"InitChartProperties": {
"SPCChartType": "MEAN_RANGE_CHART",
"ChartMode": "Time",
"NumSamplesPerSubgroup": 5,
"NumDatapointsInView": 12,
"TimeIncrementMinutes": 15

 },

By convention, property names have the starting letter of each word capitalized. In actuality, property
names ignore case.

Property values (objects on the right side of the colon ":", can be primitive objects (integer, double,
boolean and String), arrays of primitive objects, or arrays of property/value pairs. Arrays are comma
delimited lists, surrounded by brackets "[]". The integer, double and boolean types DO NOT use quotes.
The string primitive does use quotes.

The properties which start with CuSum apply only to the CuSum chart type and do not have to be
included in any other chart type.

Curly brackets and commas were mostly eliminated from the outline below in order to increase
readability. They remain where array objects use them to delineate an array of objects of the same type.
The block:

NamedRuleSet
RuleSet: SPC string constant

 RuleEnable: [boolean, boolean, …]

is actually coded in JSON as:

"NamedRuleSet"
{

"RuleSet": "WECO_RULES",
 "RuleEnable": [true, true, true, true, true, true, false, false]
}

An object of type integer should be entered as an integer value, with no quotes around it. The block:

Canvas
Width: integer: 800
Height: integer: 600

is actually coded as

"Canvas": {
 "Width": 800,
 "Height": 550
},

An object of type double should be entered as an double value, with no quotes around it. The block:

ChartPositioning

52

GraphStartPosX: double: 0.15
 GraphStopPosX: double: 0.8

is actually coded in JSON as

"ChartPositioning": {
"GraphStartPosX": 0.125,
"GraphStopPosX": 0.8

},

A double can be specified using a decimal format, 123.455, or an integer format, 123.

There are many string constants used in the software. A string constant is a predefined string which
represents a specific value to the software. One type of string constant is a color constant. The software
supports a long list of predefined names for colors. A complete list of the supported Color constants
appears in the Appendix. String constants are always surrounded by quotes. The block:

DefaultAlarmColors
Target: Color String constant: "GREEN"
LowAlarm: Color String constant: "BLUE"
HighAlarm: Color String constant: "RED"

is coded in JSON as:

"DefaultAlarmColors": {
"Target": "GREEN",
"LowAlarm": "BLUE",
"HighAlarm": "RED"

},

Another type of string constant are SPCChart constants. They are used throughout the software. Like the
color constants, they must be surrounded by quotes. The block:

TableSetup
 HeaderStringsLevel: String
 EnableCategoryValues: boolean
 EnableCalculatedValues: boolean
 EnableTotalSamplesValues: boolean
 EnableNotes: boolean
 TableBackgroundMode: SPC String constant
 BackgroundColor1: Color String constant

BackgroundColor2: Color String constant

is coded in JSON as:

"TableSetup": {
"HeaderStringsLevel": "HEADER_STRINGS_LEVEL3",
"EnableCategoryValues": true,
"EnableCalculatedValues": true,
"EnableTotalSamplesValues": false,
"EnableNotes": false,

53

"TableBackgroundMode": "TABLE_STRIPED_COLOR_BACKGROUND",
"BackgroundColor1": "BEIGE",
"BackgroundColor2": "LIGHTGOLDENRODYELLOW"

}

By convention, color and other constants are shown in all caps. In actuality, constants ignore case.

Below is the hierarchical structure of the QCSPCChart JSON scripting language.

StaticProperties
Canvas

Width: integer: 800
Height: integer: 600

SPCChartStrings
 .
 .
 .

TimeValueRowHeader: String: "TIME"
AlarmStatusValueRowHeader: String: "ALARM"
NumberSamplesValueRowHeader: String: "NO. INSP."
TitleHeader: String: "Title: "
PartNumberHeader: String: "Part No.: "
ChartNumberHeader: String: "Chart No.: "
PartNameHeader: String: "Part Name: "
OperationHeader: String: "Operation: "
OperatorHeader: String: "Operator: "

 .
 .
 .

 There are 125 static strings constants you can set, listed in detail in the
 next section

DefaultFontName: String: "sans-serif"
DefaultTableFont:

Name: String: "sans-serif"
 Size: double: 14
 Style: String: "PLAIN"
DefaultAlarmColors

Target: Color String constant: "GREEN"
LowAlarm: Color String constant: "BLUE"
HighAlarm: Color String constant: "RED"
Trending: Color String constant: "TAN"
Stratification: Color String constant : "SALMON"

 Alternating: Color String constant "ORANGE"
HighSpecLimit = Color String constant: "RED"
LowSpecLimit =Color String constant: "BLUE"

DefaultChartFonts
 AxisLabelFont

Name: String: "sans-serif"
 Size: double: 12

54

 Style: String: "BOLD"
 AxisTitleFont: standard Name, Size:12, Style: BOLD font properties
 MainTitleFont: standard Name, Size:18, Style: BOLD font properties
 SubHeadFont: standard Name, Size:14, Style: BOLD font properties
 ToolTipFont: standard Name, Size:12, Style: PLAIN font properties
 AnnotationFont: standard Name, Size:12, Style: PLAIN font properties
 ControlLimitLabelFont: standard Name, Size:12, Style: PLAIN font properties

SPCChart
InitChartProperties

SPCChartType: SPC String constant: "MEAN_RANGE_CHART"
ChartMode: SPC String constant: "Batch"
NumSamplesPerSubgroup: integer: 5
NumCategoriesPerSubgroup: integer: 5
NumDatapointsInView: integer: 15
TimeIncrementMinutes: double: 15
CuSumKValue: double: 0.5

 CuSumHValue: double: 5
CuSumMeanValue:double: 10

ChartPositioning
 GraphStartPosX: double: 0.15
 GraphStopPosX: double: 0.8
 TableStartPosY: double: 0.0
 GraphTopTableOffset : double: 0.02
 InterGraphMargin: double: 0.075
 GraphBottomPos: double: 0.90
 BottomLabelMargin: double: 0.0
Scrollbar
 EnableScrollBar: boolean: true

 ScrollbarPosition:SPC String constants: "SCROLLBAR_POSITION_MIN"
 ScrollbarValue: double: 0
UseNoTable
 PrimaryChart: boolean: true
 SecondaryChart: boolean: true
 Histograms: boolean: true
 Title: String: ""
TableSetup
 HeaderStringsLevel: SPC String constant: "HEADER_STRINGS_LEVEL2"
 EnableInputStringsDisplay: boolean: true
 EnableCategoryValues: boolean: true
 EnableSampleValues: boolean: true
 EnableCalculatedValues: boolean: true
 EnableProcessCapabilityValues: boolean: true
 EnableTotalSamplesValues: boolean: true
 EnableNotes: boolean: true
 EnableTimeValues: boolean: true
 EnableDataToolTip: boolean: true
 EnableNotesToolTip: boolean: true
 NotesToolTip
 ButtonMask: SPC String constant: "BUTTON1_MASK"
 ToolTipMode: SPC String constant: "MOUSETOGGLE_TOOLTIP"
 NotesReadOnly: boolean: false

TableBackgroundMode:SPC String Constant: "TABLE_SINGLE_COLOR_BACKGROUND"
 TableAlarmEmphasisMode: SPC String Constant: "ALARM_HIGHLIGHT_NONE"

 ChartAlarmEmphasisMode: SPC String Constant: "ALARM_HIGHLIGHT_SYMBOL"
 BackgroundColor1: Color String constant: "WHITE"

55

 ChartData
 Title: String: ""
 PartNumber: String: ""
 ChartNumber: String: ""
 PartName: String: ""
 Operation: String: ""
 SpecificationLimits: String: ""
 Operator: String: ""
 Machine: String: ""
 Gauge: String: ""
 UnitOfMeasure: String: ""
 ZeroEquals: String: ""
 DateString: String: ""
 NotesMessage: String: ""
 ProcessCapabilitySetup
 LSLValue: double: 0
 USLValue: double: 1
 EnableCPK: boolean: false
 EnableCPM: boolean: false
 EnablePPK: boolean: false
 EnableCPL: boolean: false
 EnableCPU: boolean: false
 EnablePPL: boolean: false
 EnablePPU: boolean: false
 SampleItemDecimals: integer: 2
 CalculatedItemDecimals: integer: 2
 ProcessCapabilityDecimals: integer: 2
 CustomTimeFormatString: String: ""

SampleRowHeaderStrings: [String: "", String: "",..]
 TimeFormat: SPC String constant: "TIMEDATEFORMAT_24HM"
 TitleHeader: String: "Title:"
 PartNumberHeader : String: "Part No:"
 ChartNumberHeader: String: "Chart No:"
 PartNameHeader: String: "Part Name:"
 OperationHeader: String: "Operation:"
 SpecificationLimitsHeader: String: "Spec. Limits:"
 OperatorHeader: String: "Operator:"
 MachineHeader: String: "Machine:"
 GaugeHeader: String: "Date:"
 UnitOfMeasureHeader: String: "Units:"
 ZeroEqualsHeader: String: "Zero Equals:"
 DateHeader: String: "Date:"
 NotesHeader: String: "Notes:"
 TimeValueRowHeader: String: "TIME"

MiscChartDataProperties
 MA_W: integer: 5
 EWMA_Lambda: double: 0.2
 EWMA_UseSSLimits: boolean: false
 EWMA_StartingValue: double: 1.0

DefaultControlLimitSigma: double: 3
 AutoLogAlarmsAsNotes: boolean: false
 AlarmTimeFormatString: String: "EEE, d MMM yyyy HH:mm:ss Z"
 DefectOpportunitiesPerUnit: double: 1
 NotesReadOnly: boolean: false

AlarmReportMode: SPC String constant: "REPORT_ALL_ALARMS"

56

AddNote
Index: integer: 0
Note: string: ""
Append: boolean: false

PrimaryChartSetup
 EnableChart: boolean: true
 XAxis
 LineColor: Color String constant: "BLACK"
 LineWidth: double: 1
 Enable: boolean: true
 XAxisLabels

 Font
 Name: String: "sans-serif"
 Size: double: 12
 Style: SPC String Constant: "PLAIN"
 TextColor: Color String constant: "BLACK"
 Rotation: double: 0
 Format: SPC String constant: "TIMEDATEFORMAT_24HM"
 CustomFormatString: String: ""
 OverlapLabelMode: SPC String constant: "OVERLAP_LABEL_STAGGER"
 AxisLabelMode: SPC String constant: "AXIS_LABEL_MODE_DEFAULT"
 Enable: boolean: true
 YAxisLeft
 LineColor: Color String constant: "BLACK"
 LineWidth: double: 1
 MinValue: double: 0
 MaxValue: double: 1
 Enable: boolean: true

 YAxisLeftLabels
 Font

 Name: String: "sans-serif"
 Size: double: 12
 Style: SPC String Constant: "PLAIN"
 TextColor: Color String constant: "BLACK"
 Rotation: double: 0
 Format: constant(String)
 OverlapLabelMode: SPC String constant: "OVERLAP_LABEL_STAGGER"
 Decimal: integer: 1
 AxisLabelMode: SPC String constant: "AXIS_LABEL_MODE_DEFAULT"
 Enable: boolean: true

 YAxisRight
 LineColor: Color String constant: "BLACK"
 LineWidth: double: 1
 Enable: boolean: true

 FrequencyHistogram
 EnableDisplayFrequencyHistogram: boolean: true
 PlotBackgroundColor : Color String constant: "WHITE"
 BarColor: Color String constant: "LIGHTBLUE"

 PlotMeasurementValues: boolean: false
 LineMarkerPlot
 LineColor: Color String constant: "BLUE"

57

 LineWidth: double: 1
 SymbolColor: Color String constant: "BLUE"
 SymbolFillColor: Color String constant: "BLUE"
 SymbolType: SPC String constant: "CIRCLE"
 Enable: boolean: true

 GraphBackground
 FillColor: Color String constant: "WHITE"
 BackgroundMode: SPC String constant: "SIMPLECOLORMODE"
 GradientStartColor: Color String constant: "WHITE"
 GradientStopColor: Color String constant: "LIGHTGRAY"
 Enable: boolean: true

 PlotBackground
 FillColor: Color String constant: "WHITE"
 BackgroundMode: SPC String constant: "SIMPLECOLORMODE"
 GradientStartColor: Color String constant: "WHITE"
 GradientStopColor: Color String constant: "LIGHTGRAY"
 Enable: boolean: true

 ControlLimits

 Font
 Name: String: "sans-serif"
 Size: double: 12

Style: SPC String Constant: "PLAIN"
 DefaultLimits [boolean: true, boolean: true]

SetLimits: [double: 0, double: 0, double 0]
 Decimal: integer: 1

 ZoneFill: boolean: false
 ZoneColors: [

Color String constant: "ORANGERED",
Color String constant: "LIGHTGOLDENRODYELLOW",
Color String constant: "LIGHTGREEN"

]
 Target
 LineColor: Color String constant: "GREEN"
 TextColor: Color String constant: "BLACK"
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "XBAR"
 EnableAlarmLine: boolean: true
 EnableAlarmChecking : boolean: true
 LCL3
 LineColor: Color String constant
 TextColor: Color String constant
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "LCL"
 EnableAlarmLine: boolean: true
 EnableAlarmChecking : boolean: true

 EnableAlarmLineText: String: true
 UCL3
 LineColor: Color String constant
 TextColor: Color String constant
 LineWidth: double: 1
 LimitValue: double: 0

58

 DisplayString: String: UCL
 EnableAlarmLine: boolean: true
 EnableAlarmChecking : boolean: true

 EnableAlarmLineText: String: true
 123SigmaControlLimits
 Target: double: 0
 LCL3Value: double: 0
 UCL3Value: double: 0
 AlarmTest12: boolean: true
 EnableAlarmLine: boolean: true
 EnableAlarmChecking: boolean: true
 EnableAlarmLineText: boolean: true

NamedRuleSet
 RuleSet: SPC string constant
 RuleEnable [boolean, boolean …]
 CustomizeRules: [{

 "RuleNumber": 15,
 "M": 18,
 "N": 15

},

 { "RuleNumber": 15,
 "M": 18,
 "N": 15

},
...

]
 AddControlRules

[{
 RuleSet: : SPC String constant: "BASIC_RULES"
 RuleNumber: integer: 2
 EnableAlarmLine: boolean: true
 EnableAlarmChecking: boolean: true
 EnableAlarmLineText: String: true

LimitValue: double: 0
N: integer: 1
M: integer: 1
TemplateNumber: integer: 2
SigmaLevel: double: 3

},
{

RuleSet: : SPC String constant: "BASIC_RULES"
 RuleNumber: integer: 2
 EnableAlarmLine: boolean
 EnableAlarmChecking: boolean
 EnableAlarmLineText: String

LimitValue: double: 0
N: integer: 1
M: integer: 1

}, ...

]
 SpecifyControlLimitsUsingMeanAndSigma

Mean: double: 1
Sigma: double: 1

59

SpecificationLimits
Font

 Name: String: "sans-serif"
 Size: double: 12

Style: SPC String Constant: "PLAIN"
 Decimal: integer: 1
 LowSpecificationLimit
 LineColor: Color String constant: "BLUE"
 TextColor: Color String constant: "BLACK"
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "LSL"
 EnableAlarmLine: boolean: true
 nableAlarmChecking : boolean: true

 EnableAlarmLineText: String: true
 HighSpecificationLimit
 LineColor: Color String constant: "RED"
 TextColor: Color String constant: "BLACK"
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "USL"
 EnableAlarmLine: boolean: true
 EnableAlarmChecking : boolean: true

SecondaryChartSetup

 The SecondaryChartSetup is same as PrimaryChartSetup, exept
that there is no NamedRuleSet block

Events
AlarmStateEventEnable: boolean: true
AlarmTransitionEventEnable: boolean: false
EnableDataToolTip: boolean: true
EnableJSONDataToolTip: boolean: false
DataToolTip
 EnableCategoryValues: boolean: false
 EnableProcessCapabilityValues: boolean: false
 EnableCalculatedValues: boolean: false
 EnableNotesString: boolean: false
EnableNotesToolTip: boolean: true
NotesToolTip;

 ButtonMask: SPC String constant: "BUTTON1_MASK"
 ToolTipMode: SPC String constant: "MOUSETOGGLE_TOOLTIP"
 NotesReadOnly: boolean: false

EnableAlarmStatusValues: boolean: true
ChartAlarmEmphasisMode: SPC string constant: "ALARM_HIGHLIGHT_SYMBOL"

SampleData
 SampleIntervalRecords

[{
TimeStamp: double:

60

BatchCount: integer: 1
 Note: String: ""
 BatchIDString: String: ""
 VariableControlLimits: [double:1,double:1, ...]
 SampleSubgroupSize_VSS: integer: -1
 SampleValues [double, double,...]

},
{

TimeStamp: double:
BatchCount: integer: 2

 Note: String: ""
 BatchIDString: String: ""
 VariableControlLimits: [double:1,double:1, ...]
 SampleSubgroupSize_VSS: integer: -1
 SampleValues [double, double,...]

}, …
]

DataSimulation
 StartCount: integer: 0
 Count: integer: 20
 Mean: double: 1
 Range: range: 1
ExcludeRecords: [integer, integer, ..]
IncludeRecords: [integer, integer, ..]
ResetSPCChartData

Methods
AutoCalculateControlLimits [boolean, boolean]

 AutoScaleYAxes [boolean, boolean]
 RebuildUsingCurrentData

UpdateDisplay

FrequencyHistogram
ChartSetup

 ChartPositioning
X1: double
Y1: double
X2: double
Y2: double

 MainTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 CoordinateSystem
 MinXScale: double
 MinYScale: double
 MaxXScale: double
 MaxYScale: double

 XAxis
 LineColor: Color String constant

 LineWidth: double
 XAxisLabels

61

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double
 Format: SPC String constant
 OverlapLabelMode: SPC String constant
 Decimal: integer
 AxisLabelsStrings: [String, String, ...]

 XAxisTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 YAxis
 LineColor: Color String constant

 LineWidth: double
 YAxisLabels

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double
 Format: SPC String constant
 OverlapLabelMode: SPC String constant
 Decimal: integer
 AxisLabelsStrings: [String, String, ...]

 YAxisTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 HistogramPlot
 LineColor: Color String constant
 LineWidth: double
 BarColor: Color String constant
 GraphBackground

 FillColor: Color String constant
 BackgroundMode: SPC String constant
 GradientStartColor: Color String constant
 GradientStopColor: Color String constant

 PlotBackground
 FillColor: Color String constant
 BackgroundMode: SPC String constant
 GradientStartColor: Color String constant
 GradientStopColor: Color String constant

LimitValueDecs: integer
 ControlLines

[{
LimitValue: double

62

LineColor: Color String constant
LineWidth: double

 },
{

LimitValue: double
LineColor: Color String constant
LineWidth: double

 }, ...
]
NormalCurveLine
{

Enable: boolean
LineColor: Color String constant
LineWidth: double

 }
FrequencyHistogramData

 SampleValues [double, double, ...]
 FrequencyBins [double, double, ...]

Methods
RebuildAndDraw

ParetoChart
ChartSetup

 ChartPositioning
X1: double
Y1: double
X2: double
Y2: double

 MainTitle
 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 CoordinateSystem1
 MinXScale: double
 MinYScale: double
 MaxXScale: double
 MaxYScale: double

 CoordinateSystem2
 MinXScale: double
 MinYScale: double
 MaxXScale: double
 MaxYScale: double

 XAxis
 LineColor: Color String constant

 LineWidth: double
XAxisLabels

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double

63

 Format: SPC String constant
 OverlapLabelMode: SPC String constant
 Decimal: integer
 AxisLabelsStrings: [String, String, ..]

 XAxisTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 YAxisLeft
LineColor: Color String constant

 LineWidth: double
 YAxisLeftLabels

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double
 Format: SPC String constant
 OverlapLabelMode: SPC String constant
 Decimal: integer
 AxisLabelsStrings: [String, String, ..]

 YAxisLeftTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 YAxisRight
LineColor: Color String constant

 LineWidth: double
 YAxisRightLabels

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double
 Format: SPC String constant
 OverlapLabelModeconstant (String)
 Decimal: integer
 AxisLabelsStrings: [String, String, ...]

 YAxisRightTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 BarPlot
 LineColor: Color String constant
 LineWidth: double

64

 BarColor: Color String constant
 LineMarkerPlot
 LineColor: Color String constant
 LineWidth: double
 SymbolFillColor: Color String constant
 SymbolLineColor: Color String constant
 SymbolColor: Color String constant
 SymbolSize: double
 GraphBackground

 FillColor: Color String constant
 BackgroundMode: SPC String constant
 GradientStartColor: Color String constant
 GradientStopColor: Color String constant

 PlotBackground
 FillColor: Color String constant
 BackgroundMode: SPC String constant
 GradientStartColor: Color String constant
 GradientStopColor: Color String constant
ParetoChartData

 CategoryItems [double, ...]
 CategoryStrings [String, ...]

Methods
RebuildAndDraw

Full List of the Static SPCChartStrings Objects

This is a list of the default, static, strings used in the software. You can change the value to string you
want. In some case, such as font-family names, and time formats, you must supply a valid string.

SPCChartStrings

start "start" - used to mark the beginning of the array

 ChartFont "sans-serif" - default font string

 HighAlarmStatus "H" - alarm status line - High short string

 LowAlarmStatus "L" - alarm status line - Low short string

 ShortStringNo "N" - No short string

 ShortStringYes "Y" - Yes short string

 DataLogUserString "" - default data log user string

 SPCControlChartDataTitle "Variable Control Chart (X-Bar & R)" - Default chart
title

 ZeroEqualsZero "zero" - table zero string

 TimeValueRowHeader "TIME" - TIME row header

 AlarmStatusValueRowHeader "ALARM" - ALARM row header

 NumberSamplesValueRowHeader "NO. INSP." - NO. INSP. row header

 TitleHeader "Title: " - Title field caption

65

 PartNumberHeader "Part No.: " - Part number field caption

 ChartNumberHeader "Chart No.: " - Chart number field caption

 PartNameHeader "Part Name: " - Part name field caption

 OperationHeader "Operation:" - Operation field caption

 OperatorHeader "Operator:" - Operator field caption

 MachineHeader "Machine: " - Machine field caption

 DateHeader "Date: " - Date field caption

 SpecificationLimitsHeader "Spec. Limits: " - Spec limits field caption

 GaugeHeader "Gauge: " - Chart number field caption

 UnitOfMeasureHeader "Units: " - Chart number field caption

 ZeroEqualsHeader "Zero Equals: " - Chart number field caption

 DefaultMean "MEAN" - MEAN Calculated value row header

 DefaultMedian "MEDIAN" - MEDIAN Calculated value row header

 DefaultRange "RANGE" - RANGE Calculated value row header

 DefaultVariance "VARIANCE" - VARIANCE Calculated value row header

 DefaultSigma "SIGMA" - SIGMA Calculated value row header

 DefaultSum "SUM" - SUM Calculated value row header

 DefaultSampleValue "SAMPLE VALUE" - SAMPLE VALUE alculated value row
header

 DefaultAbsRange "ABS(RANGE)" - ABS(RANGE) Calculated value row
header

 DefaultMovingAverage "MA" - Moving Average

 DefaultCusumCPlus "C+" - CuSum Plus string

 DefaultCusumCMinus "C-" - CuSum Minus string

 DefaultEWMA "EWMA" - EWMA string

 DefaultPercentDefective "% DEF." - Percent Defective

 DefaultFractionDefective "FRACT. DEF." - Fraction Defective

 DefaultNumberDefective "NO. DEF." - Number Defective

 DefaultNumberDefects "NO. DEF." - Number Defects

 DefaultNumberDefectsPerUnit "NO. DEF./UNIT" - Number Defects per Unit

 DefaultNumberDefectsPerMillion "DPMO" - Number Defects per Million

 DefaultPBar "PBAR" - Target label for Attribute charts

 DefaultAttributeLCL "LCLP" - Low limit label for Attribute charts

 DefaultAttributeUCL "UCLP" - High limit label for Attribute charts

 DefaultAbsMovingRange "MR" - Moving Range Calculated value row header

 DefaultAbsMovingSigma "MS" - Moving Sigam Calculated value row header

 DefaultX "X" - Default string used to label centerline value
of I-R chart.

66

 DefaultXBar "XBAR" - Default string used to label centerline
value for XBar chart

 DefaultRBar "RBAR" - Default string used to label centerline
value for Range chart

 DefaultTarget "Target" - Default string used for target

 DefaultLowControlLimit "LCL" - Default string used to label low control
limit line

 DefaultLowAlarmMessage "Low Alarm" - Default string used for low alarm
limit message

 DefaultUpperControlLimit "UCL", - Default string used to label high control
limit line

 DefaultHighAlarmMessage "High Alarm" - Default string used for high alarm
limit message

 DefaultSampleRowHeaderPrefix "Sample #" - Row header for Sample # rows

 DefaultDefectRowHeaderPrefix "Defect #" - Row header for Defect # rows

 BatchColumnHead "Batch #" - Default string used as the batch number
column head in the log file.

 TimeStampColumn "Time Stamp" - Default string used as the time stamp
column head in the log file.

 SampleValueColumn "Sample #" - Default string used as the sample value
column head in the log file.

 NotesColumn "Notes" - Default string used as the notes value
column head in the log file.

 DefaultDateFormat "M/dd/yyyy" - Default date format used by the
software.

 DefaultTimeStampFormat "M/dd/yyyy HH:mm:ss" - Default full date/time format
used by the software.

 DefaultDataLogFilenameRoot "SPCDataLog" - Root string used for auto-naming of
log data file.

 dataLogFilename "SPCDataLog" - Datalog Default file name, usually
over-ridden when data log opened.

 FrequencyHistogramXAxisTitle "Measurements" - Frequency Histogram Default x-axis
title.

 FrequencyHistogramYAxisTitle "Frequency" - Frequency Histogram default y-axis
title.

 FrequencyHistogramMainTitle "Frequency Histogram" - Frequency Histogram default
main title.

 ParetoChartXAxisTitle "Defect Category" - Pareto chart x-axis title

 ParetoChartYAxis1Title "Frequency" - Pareto chart left y-axis title

 ParetoChartYAxis2Title "Cumulative %" - Pareto chart right y-axis title

 ParetoChartMainTitle "Pareto Diagram" - Pareto chart main title

 ProbabilityChartXAxisTitle "Frequency Bin" - Probability chart x-axis title

 ProbabilityChartYAxisTitle "% Population Under" - Probability chart y-axis

67

title

 ProbabilityChartMainTitle "Normal Probability Plot" - Probability chart main
title

 Basic "Basic",

 Weco "WECO" - WECO rules string

 Weco wsupp "WECO+SUPPLEMENTAL" - WECO rules string

 Nelson "Nelson " - Nelson rules string

 Aiag "AIAG" - AIAG rules string

 Juran "Juran " - Juran rules string

 Hughes "Hughes " - Hughes rules string

 Gitlow "Gitlow " - Gitlow rules string

 Duncan "Duncan " - Duncan rules string

 Westgard "Westgard" - Westgard rules string

 Primarychart "Primary chart" - Used in alarm messages to specify
the Primary Chart variable chart is in alarm

 Secondarychart "Secondary chart" - Used in alarm messages to
specify the Secondary Chart variable chart is in alarm

 Greaterthan "greater than" - Used in alarm messages to specify
that a greater than alarm limit has been violated

 Lessthan "less than" - Used in alarm messages to specify that
a less than alarm limit has been violated

 Above "above" - Used in alarm messages to specify that
values above a limit

 Below "below" - Used in alarm messages to specify that
values below a limit

 Increasing "increasing" - Used in alarm messages to specify
that values are increasing

 Decreasing "decreasing" - Used in alarm messages to specify
that values are decreasing

 Trending "trending" - Used in alarm messages to specify that
values are trending

 Within "within" - Used in alarm messages to specify that
values are within certain limits

 Outside "outside" - Used in alarm messages to specify that
values are outside certain limits

 Alternating "alternating" - Used in alarm messages to specify
that values are alternating about a limit value

 Centerline "center line" - Used in alarm messages to specify
the center line of the chart

 R2s "R2s" - Used in alarm messages to specify Westgard
Rule R2s #9

 SigmaShort "S" - Used in alarm messages as sigma short string

68

 BbeyondAlarmStatus "B" - alarm status line - beyond short string

 TrendingAlarmStatus "T" - alarm status line - trending short string

 StratificationAlarmStatus "S" - alarm status line - stratification short
string

 OscillationAlarmStatus "O" - alarm status line - oscillation short string

 R4sAlarmStatus "R" - alarm status line - R4s short string

 Rule "Rule" - used in alarm messages for word "Rule"

 Violation "violation" - used in alarm messages for word
"violation"

 Sigma "sigma" - used in alarm messages for word "sigma"

 Target "Target" - used in alarm messages for word "Target"

 Ucl "UCL" - used in alarm messages for to designate
Upper Control Limit

 Lcl "LCL" - used in alarm messages for to designate
Lower Control Limit

 DefaultCp "Cp "

 DefaultCpl "Cpl"

 DefaultCpu "Cpu"

 DefaultCpk "Cpk"

 DefaultCpm "Cpm"

 DefaultPp "Pp"

 DefaultPl "Pl"

 DefaultPu "Pu"

 DefaultPpk "Ppk"

 Canceltext "Cancel" - used for buttons in dialogs that have
cancel button

 Alarmstatusdialogtitle "Alarm Status" - used as the title for the alarm
status dialog box

 end "end" - used to mark the end of the array

The example below is extracted from the TimeXBarR script found in the chartDefExampleScripts.js file.

 "StaticProperties": {
 "Canvas": {
 "Width": 800,
 "Height": 550
 },
 "DefaultFontName": "Arial, sans-serif",

69

 "DefaultTableFont": {
 "Name": "'Comic Sans MS', cursive, sans-serif",
 "Size": 12,
 "Style": "Plain"
 },
 "SPCChartStrings": {
 "TitleHeader": "Project Name:",
 "DefaultMean": "Average",
 "TimeValueRowHeader": "Time"
 }
 },

Note that the property name (i.e. "DefaultMean", and the new string value (i.e. "Average") are
surrounded by quotes.

4. Static Property Initialization

StaticProperties
Canvas
SPCChartStrings
DefaultFontName
DefaultTableFont:
DefaultAlarmColors
DefaultTableFonts

There are a large number of properties which correspond to static properties in the underlying libraries.
They are static because they are mean to be set once, on the loading of the parent HTML page, and stay
in effect for the duration of the page lifetime, regardless of the number of charts which are displayed.
Examples of this are the Canvas: Height and Width properties, the DefaultFontName used to specify the
Font family used within the charts, and default alarm colors used by the various control limit display
routines. There is also a long list (SPCChartStrings) of strings which can be change to regionalize the
software for a specific region or language. These all fall under the StaticProperties block.

Properties are displayed in the

[Property Name]: [type]: [default value]

format for readability, which is not a JSON format. Use the example code listings for proper JSON
formatted scripts.

StaticProperties
Canvas

Width: integer: 800
Height: integer: 600

SPCChartStrings
 .
 .
 .

TimeValueRowHeader: String: "TIME"
AlarmStatusValueRowHeader: String: "ALARM"
NumberSamplesValueRowHeader: String: "NO. INSP."
TitleHeader: String: "Title: "
PartNumberHeader: String: "Part No.: "
ChartNumberHeader: String: "Chart No.: "
PartNameHeader: String: "Part Name: "
OperationHeader: String: "Operation: "
OperatorHeader: String: "Operator: "

 .
 .
 .

 There are 125 static strings constants you can set

DefaultFontName: String: "sans-serif"

71

DefaultTableFont:
Name: String: "sans-serif"

 Size: double: 14
 Style: String: "PLAIN"

DefaultAlarmColors
Target: Color String constant: "GREEN"
LowAlarm: Color String constant: "BLUE"
HighAlarm: Color String constant: "RED"
Trending: Color String constant: "TAN"
Stratification: Color String constant : "SALMON"

 Alternating: Color String constant "ORANGE"
HighSpecLimit = Color String constant: "RED"
LowSpecLimit =Color String constant: "BLUE"

 DefaultChartFonts
AxisLabelFont

Name: String: "sans-serif"
 Size: double: 12

 Style: String: "BOLD"
AxisTitleFont: standard Name, Size:12, Style: BOLD font properties
MainTitleFont: standard Name, Size:18, Style: BOLD font properties
SubHeadFont: standard Name, Size:14, Style: BOLD font properties
ToolTipFont: standard Name, Size:12, Style: PLAIN font properties
AnnotationFont: standard Name, Size:12, Style: PLAIN font properties
ControlLimitLabelFont: standard Name, Size:12, Style: PLAIN font properties

Canvas

Canvas
Width: integer: 800
Height: integer: 600

The Canvas object controls the size of the underlying HTML5 Canvas that the charts are place in.

Properties

Width An integer value specifying the Canvas width
Height An integer value specifying the Canvas height

Example

 "Canvas": {
 "Width": 800,
 "Height": 550
 },

72

SPCChartStrings

There are 125 string constants (more or less) used in the software. Their values are all static. You can
change any, or all of the string constants to match your requirements. See the SPCChartStrings Listing
in the previous chapter for a complete list of the strings.

SPCChartStrings
 .
 .

TimeValueRowHeader: String: "TIME"
AlarmStatusValueRowHeader: String: "ALARM"
NumberSamplesValueRowHeader: String: "NO. INSP."
TitleHeader: String: "Title: "
PartNumberHeader: String: "Part No.: "
ChartNumberHeader: String: "Chart No.: "
PartNameHeader: String: "Part Name: "
OperationHeader: String: "Operation: "
OperatorHeader: String: "Operator: "

 .
 .
 .

A complete list of SPCChartStrings is found at the end of Chapter 3.

Change the strings using the following JSON example:

"SPCChartStrings": {
 "DefaultMean": "Average",
 "TimeValueRowHeader": "Time"
}

List as many of the 125 strings as you need to change. Make sure to surround both the string property
name, "DefaultMean" for example, and the string value, "Average" with quotes.

DefaultFontName

DefaultFontName: String: "sans-serif"

The DefaultFontName specifies the Font family used by default in the charts and table. So, if you want
to change the default font from sans-serif to Comic Sans MS, use the following JSON statement.

DefaultFontName: "'Comic Sans MS'",

Specifying a very specific font such as "Comic Sans MS" is risky on a web page though, because the
device displaying the web page may not have that font installed. The font-name property should hold
several font names as a "fallback" system, to ensure maximum compatibility between
browsers/operating systems. If the browser does not support the first font, it tries the next font. Start with

73

the font you want, and end with a generic family, to let the browser pick a similar font in the generic
family, if no other fonts are available.

Below are some commonly used font combinations, organized by generic family.

Serif Fonts
Georgia, serif Example Text
"'Palatino Linotype", "'Book Antiqua", Palatino, serif Example Text
"Times New Roman", Times, serif Example Text

Sans-Serif Fonts
Arial, Helvetica, sans-serif Example Text
"Arial Black", Gadget, sans-serif Example Text
"Comic Sans MS", cursive, sans-serif Example Text
Impact, Charcoal, sans-serif Example Text
"Lucida Sans Unicode", "Lucida Grande", sans-serif Example Text
Tahoma, Geneva, sans-serif Example Text
"Trebuchet MS", Helvetica, sans-serif Example Text
Verdana, Geneva, sans-serif Example Text

Monospace Fonts
"Courier New", Courier, monospace Example Text
"Lucida Console", Monaco, monospace Example Text

Note that font names which use a space as part of the name, "Time New Roman" for example, are
surrounded by quotes, while those that have a single word as a name, Times for example, do not. When
specifying strings in the JSON file you must avoid doubled quotes, so substitute an apostrophe, ', for an
internal quote symbol. So the DefaultFontName block becomes:

DefaultFontName: "'Comic Sans MS', cursive, sans-serif",

DefaultTableFont

The same is true of the DefaultTableFont, though in this case you can specify a font size and style, if
you want it to vary from the DefaultFontName used in the charts.

DefaultTableFont:
Name: String: "sans-serif"
Size: double: 14

 Style: String: "PLAIN"

74

where:

Name

Any valid HTML font-family name

Size

Size in points

Style

Use of the style string constants: "Plain", "Normal", "Bold","Italic","Bold Italic"

Example JSON script

"DefaultTableFont":
{ "Name": "Times, cursive, sans-serif",

"Size": 10,
"Style": "Plain"

},

Font names which include embedded spaces, as in 'Comic Sans MS' should be surrounded with
apostrophes within the quoted string.

"DefaultTableFont":
{ "Name": "'Comic Sans MS', cursive, sans-serif",

"Size": 10,
"Style": "Plain"

},

DefaultAlarmColors

DefaultAlarmColors
Target: Color String constant: "GREEN"
LowAlarm: Color String constant: "BLUE"
HighAlarm: Color String constant: "RED"
Trending: Color String constant: "TAN"
Stratification: Color String constant : "SALMON"

 Alternating: Color String constant "ORANGE"
HighSpecLimit = Color String constant: "RED"
LowSpecLimit =Color String constant: "BLUE"

The default color choice is completely arbitrary, and everyone seems to like to set their own color
combinations. Define your own alarm colors using the JSON construct below.

75

"DefaultAlarmColors"
{

"Target": "FORESTGREEN",
"LowAlarm": "ALICEBLUE",
"HighAlarm": "CRIMSON",
"Trending": "BROWN",
"Stratification": "BURLYWOOD",
"Alternating": "PALEVIOLETRED",
"HighSpecLimit" : "INDIANRED",
"LowSpecLimit": "CADETBLUE"

}

Include only the items you want to change. The other will remain at their default value. See the appendix
for a full list of color constants. A complete list of valid color constants is found in the Appendix.

DefaultChartFonts

 DefaultChartFonts
AxisLabelFont

Name: String: "sans-serif"
 Size: double: 12

Style: String: "BOLD"
AxisTitleFont: as above: Name, Size:12, Style: BOLD
MainTitleFont: as above: Name, Size:18, Style: BOLD
SubHeadFont: as above: Name, Size:14, Style: BOLD
ToolTipFont: as above: Name, Size:12, Style: PLAIN
AnnotationFont: as above: Name, Size:12, Style: PLAIN
ControlLimitLabelFont: as above: Name, Size:12, Style: PLAIN

Define your own fonts as below.

 "DefaultChartFonts": {
 "AxisLabelFont": {
 "Name": "sans-serif",
 "Size": 16,
 "Style": "PLAIN"
 },
 "AxisTitleFont": {
 "Name": "sans-serif",
 "Size": 16,
 "Style": "BOLD"
 }
 }

5. SPC Initial Chart Setup

SPCChart
InitChartProperties
ChartPositioning
Scrollbar
UseNoTable

This chapter discusses the initial setup of an SPC Chart, which includes all Variable and Attribute
control charts supported in the software. This includes the following chart types:

Variable Control Charts Templates
Fixed sample size subgroup control charts

X-Bar R – (Mean and Range Chart)
X-Bar Sigma (Mean and Sigma Chart)
Median and Range (Median and Range Chart)
X-R (Individual Range Chart)
EWMA (Exponentially Weighted Moving Average Chart)
MA (Moving Average Chart)
MAMR (Moving Average / Moving Range Chart)
MAMS (Moving Average / Moving Sigma Chart)
CuSum (Tabular Cumulative Sum Chart)

Variable sample size subgroup control charts
X-Bar Sigma (Mean and Sigma Chart)

Attribute Control Charts Templates
Fixed sample size subgroup control charts

p Chart (Fraction or Percent of Defective Parts)
np Chart (Number of Defective Parts)
c-Chart (Number of Defects)
u-Chart (Number of Defects per Unit)
Number Defects per Million (DPMO)

Variable sample size subgroup control charts
p Chart (Fraction or Percent of Defective Parts)
u-Chart (Number of Defects per Unit)

All of these chart types come in both time-based and batch-based versions.

It does not apply to the setup of frequency histogram charts, or Pareto charts. The setup of those charts
are described in other chapters.

77

InitChartProperties setup

The initial SPC Chart setup should be the first thing your script does, after the initialization of the
Canvas, and any static items you set. Using the InitChartProperties JSON object, you specify the SPC
chart type, the x-axis mode, the number of samples or categories per sub interval, the number of sample
sub intervals per display, and in the case of a time-based control chart, the approximate time between
adjacent sample intervals. A typical SPC chart setup for an X-bar R (MEAN_RANGE_CHART) chart
looks like this:

 "StaticProperties":
 {
 "Canvas": {
 "Width": 800,
 "Height": 550
 },

},

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

Note that InitChartProperties falls under SPCChart, and the SPCChart is after
Canvas (for initial chart sizing), and the SPCChartStrings initialization (an initializer of static string
properties). You must maintain this order when initializing any of the charts. The Canvas and
SPCChartStrings blocks only need to be processed once, so if you have other JSON chart definitions in
the same file, or elsewhere in same web page, and you want to maintain the same Canvas and
SPCChartStrings, you do not need to initialize them again. But if you do change them, the change will
affect all charts, not just the one they are attached to.

The JSON objects under InitChartProperties can have the following values:

SPCChartType

The SPC chart type parameter. Use one of the string constants strings: MEAN_RANGE_CHART,
MEDIAN_RANGE_CHART, MEAN_SIGMA_CHART, MEAN_SIGMA_CHART_VSS,
INDIVIDUAL_RANGE_CHART, EWMA_CHART, MA_CHART, MAMR_CHART,
MAMS_CHART and TABCUSUM_CHART,

or use one of the Attribute control chart types:

78

PERCENT_DEFECTIVE_PARTS_CHART, FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART, NUMBER_DEFECTS_PERUNIT_CHART,
NUMBER_DEFECTS_CHART SPC, NUMBER_DEFECTS_PER_MILLION_CHART,
PERCENT_DEFECTIVE_PARTS_CHART_VSS, FRACTION_DEFECTIVE_PARTS_CHART_VSS,
NUMBER_DEFECTS_PERUNIT_CHART_VSS.

ChartMode

Specifies if the x-axis is time-based (Time), or batch-base (Batch). Use the string constant string Time
or Batch.

NumCategories

In an Attribute Control Charts this value represents the number of defect categories used to determine
defect counts. Specify a numeric value, no quotes. Since the example above is for a Variable Control
Chart (MEAN_RANGE_CHART), the NumCategories property does not need to be set.

NumSamplesPerSubgroup

Specifies the number of samples that make up a sample subgroup. If the SPCChartType is one of the
variable sample size chart types, this value must be the maximum number of samples per subgroup.
Specify a numeric value, no quotes.

NumDatapointsInView

Specifies the number of sample subgroups displayed in the graph at one time. Specify a numeric value,
no quotes.

TimeIncrementMinutes

Specifies the approximate time increment (in minutes) between adjacent subgroup samples. This applies
only to the Time ChartMode. Specify a numeric value, no quotes. Can be a double (0.5) to specify a
fraction of a minute.

The following parameters only apply to CusSum charts.

CuSumKValue

A CuSum charts K value

CuSumHValue

A CuSum charts H value

CuSumMeanValue

A CuSum charts mean value

A chart setup with these parameters

 "SPCChart": {
 "InitChartProperties": {

79

 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

would look something like this:

Note the following items:

SPCChartType

The chart type is a MEAN_RANGE_CHART, also known as an X-bar R Chart.

ChartMode

The x-axis uses a time scale.

NumSamplesPerSubgroup

The NO. INSP. row is always 5, since a MEAN_RANGE_CHART requires a fixed sample size per
sample interval.

NumDatapointsInView

The number of data points in each chart is 12, as is the number of data columns in the table

TimeIncrementMinutes

80

The time interval between adjacent samples table is 15 minutes.

Example for an Batch-mode Mean Sigma chart (X-bar Sigma)

 "InitChartProperties": {
 "SPCChartType": "MEAN_SIGMA_CHART",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 15,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

Example for an time-based Fraction Defective Parts chart ()

 "InitChartProperties": {
 "SPCChartType": "FRACTION_DEFECTIVE_PARTS_CHART",
 "ChartMode": "Time",
 "NumCategories": 5,
 "NumSamplesPerSubgroup": 50,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

81

There are many minor variants of this basic structure. See the example JSON scripts for the example
closest to your application.

82

Chart and Table Positioning

The position of the table and the charts are interrelated. The general algorithm is that the table takes
precedence. The SPC display will try and utilize the entire area of the parent window. With respect to
the y-dimension, the table will take as much vertical room in the window as it needs to display the
specified number of rows, given the specified text size. Whatever vertical real-estate left over in the
window is used to display the one or two charts which follow. There are also constraints on the width of
the table, because most of the table is divided into columns, corresponding to the discrete sample
intervals of the chart. Make the table width too small, and it will be hard to fit the desired number of
columns, and still have the text readable. There are a handful of properties which control the positioning
parameters, within these constraints.

The position of the table, and the SPC charts in the display window is controlled by the ChartPositioning
object.

SPCChart
ChartPositioning
 GraphStartPosX: double: 0.15
 GraphStopPosX: double: 0.8
 TableStartPosY: double: 0.0
 GraphTopTableOffset : double: 0.02
 InterGraphMargin: double: 0.075
 GraphBottomPos: double: 0.90
 BottomLabelMargin: double: 0.0

GraphStartPosX

Specifies the left edge, using normalized coordinates, of the plotting area for both primary and
secondary charts

GraphStopPosX

Specifies the right edge, using normalized coordinates, of the plotting area for both primary and
secondary charts

TableStartPosY

Specifies the top edge, using normalized coordinates, of the SPC chart table

GraphTopTableOffset

Specifies the offset of the top of the primary chart from the bottom of the data table, using normalized
coordinates

GraphBottomPos

Specifies the bottom edge, using normalized coordinates, of the plotting area for the secondary chart

83

InterGraphMargin

Specifies the margin, in normalized coordinates, between the primary and seconday charts

BottomLabelMargin

Specifies an additional margin, in normalized coordinates, if only the primary graphs is displayed,
allowing for the x-axis labels

If the SPC chart does not include frequency histograms on the left (they take up about 20% of the
available chart width), you can adjust the left and right edges of the chart using the GraphStartPosX
and GraphStopPlotX properties to allow for more room in the display of the data. This also affects the
table layout, because the table columns must line up with the chart data points.

"ChartPositioning": {
"GraphStartPosX": 0.1,
"GraphStopPosX" : 0.875

},

There is not much flexibility positioning the top and bottom of the chart. Depending on the table items
enabled, the table starts at the position defined by the TableStartPosY property, and continues until all
of the table items are displayed. It then offsets the top of the primary chart with respect to the bottom of
the table by the value of the property GraphTopTableOffset. The value of the property
GraphBottomPos defines the bottom of the graph. The default values for these properties are:

"ChartPositioning": {
"TableStartPosY" : 0.00,
"GraphTopTableOffset" : 0.02,
"GraphBottomPos" : 0.925

},

Scrollbar
Scrollbar

EnableScrollBar: boolean: true
ScrollbarPosition:SPC String constants: "SCROLLBAR_POSITION_MIN"
ScrollbarValue: double: 0

Normally, you have more data than can fit on the screen at once. In order to view the unseen data, a
scroll bar is used at the bottom of the chart area to scroll left or right. The scrollbar will appear by
default if there are more data points than the NumDatapointsInView property. You can change the
default behavior by explicitly turning the scroll bar on and off. You can also set the initial value of the
scroll bar so some know value, using the ScrollbarValue property, or you can force the go to the
maximum value of the scroll bar after any data updates. That way the most recent data will always be in
view. Or, you can specify that after a RebuildUsingCurrentData, which usually increases the scroll bars

84

range of values, that the scrollbar position to show the must recently added data
("SCROLLBAR_POSITION_MAX"), or the oldest data ("SCROLLBAR_POSITION_MIN").

EnableScrollBar

Set to true or false to enable/disable the scroll bar.

ScrollbarPosition

Set to the string constant value "SCROLLBAR_POSITION_MIN", "SCROLLBAR_POSITION_MAX"
or "SCROLLBAR_POSITION_UNCHANGED". The value "SCROLLBAR_POSITION_MIN" forces
the scroll bar to remain at it's minimum position (oldest data) after any updates. The value
"SCROLLBAR_POSITION_MAX" is the opposite of "SCROLLBAR_POSITION_MIN", and it will
force the scroll bar to its maximum position (newest data) after any updates. And the
"SCROLLBAR_POSITION_UNCHANGED" value will leave the scroll bar positioned at its current
index.

ScrollbarValue

Ues this property to set the scroll bar value to a specified index value. The index value reflects the
starting index of the data in the chart, corresponding to the left-most point in the current chart view.

Enable scroll bar and set its position to SCROLLBAR_POSITION_MAX

"Scrollbar": {
"EnableScrollBar": true,
"ScrollbarPosition": "SCROLLBAR_POSITION_MAX"

},

Enable scroll bar and set its position to the chart data index 123.

"Scrollbar": {
"EnableScrollBar": true,
"ScrollbarValue": 123

},

UseNoTable

A common option is to remove the table from the display; either you don't need the table data, since it is
redundant with much of the information displayed in the chart, or you want to plot many more data
points than the table permits. Since the table displays the sample interval data in columnar format, the
number of data points in the chart need to match the number of columns in the table. This restricts the
number of data points you can display in the graph to something in the range of 10-20, i.e. the number of
columns which will fit on the screen. Eliminate the table and you can fit 100's of sample interval data
points on the screen at once. Only use property if you want the chart to not have a table. Otherwise leave
it out of the JSON script entirely.

85

UseNoTable
 PrimaryChart: boolean: true
 SecondaryChart: boolean: true
 Histograms: boolean: true
 Title: String: ""

PrimaryChart

Set to true to display the primary chart.

SecondaryChart

Set to true to display the secondary chart.

Histograms

Set to true to display the histograms to the left of each chart.

Title

Specify a string title to display above the graphs.

When using UseNoTable, do NOT use a TableSetup block in your JSON script.

Example

 "UseNoTable": {
 "PrimaryChart": true,
 "SecondaryChart": true,
 "Histograms": true,
 "Title": "SPC Chart without a table"
 },

86

87

6. SPC Data Table Setup

 SPCChart

TableSetup
 HeaderStringsLevel: SPC String constant: "HEADER_STRINGS_LEVEL2"
 EnableInputStringsDisplay: boolean: true
 EnableCategoryValues: boolean: true
 EnableSampleValues: boolean: true
 EnableCalculatedValues: boolean: true
 EnableProcessCapabilityValues: boolean: true
 EnableTotalSamplesValues: boolean: true
 EnableNotes: boolean: true
 EnableTimeValues: boolean: true
 EnableDataToolTip: boolean: true
 EnableNotesToolTip: boolean: true
 NotesToolTip
 ButtonMask: SPC String constant: "BUTTON1_MASK"
 ToolTipMode: SPC String constant: "MOUSETOGGLE_TOOLTIP"
 NotesReadOnly: boolean: false

TableBackgroundMode:SPC String Constant: "TABLE_SINGLE_COLOR_BACKGROUND"
 TableAlarmEmphasisMode: SPC String Constant: "ALARM_HIGHLIGHT_NONE"

 ChartAlarmEmphasisMode: SPC String Constant: "ALARM_HIGHLIGHT_SYMBOL"
 BackgroundColor1: Color String constant: "WHITE"

 ChartData

The SPC Data Table is a table which appears above the actual SPC charts. It is designed to be a generic
form for the display of run specific information for an SPC Chart. The top most part of the table is the
header, where items such as the chart Title, Part Number, Part Name, etc., are displayed. The second
part of the table displays numeric data values for each sample interval of the chart, including the raw
sample values, and the calculated values of the chart (mean, range, sum, sigma, etc.). The third part of
the table is status information, display the current alarm status, and any notes assocated with the sample
interval. All parts of the table are optional. You can minimize the table, or skip it entirely, using the
various options.

Header Information

Raw Sample Data

88

Calculated Data Values

 Status

Put it all together and it would look something like:

When you combine the table with the chart, the number of data points displayed should be limited so
that the table columns can line up with the data points in the chart underneath.

89

Table Setup Items

The TableSetup property is under the SPCChart property. TableSetup contains all of the values needed
to customize the table display and features.

SPCChart
TableSetup
 HeaderStringsLevel: SPC String constant: "HEADER_STRINGS_LEVEL2"
 EnableInputStringsDisplay: boolean: true
 EnableCategoryValues: boolean: true
 EnableSampleValues: boolean: true
 EnableCalculatedValues: boolean: true
 EnableProcessCapabilityValues: boolean: true
 EnableTotalSamplesValues: boolean: true
 EnableNotes: boolean: true
 EnableTimeValues: boolean: true
 EnableDataToolTip: boolean: true
 EnableNotesToolTip: boolean: true
 NotesToolTip
 ButtonMask: SPC String constant: "BUTTON1_MASK"
 ToolTipMode: SPC String constant: "MOUSETOGGLE_TOOLTIP"
 NotesReadOnly: boolean: false

 TableBackgroundMode:SPC String Constant: "TABLE_SINGLE_COLOR_BACKGROUND"
 TableAlarmEmphasisMode: SPC String Constant: "ALARM_HIGHLIGHT_NONE"

 ChartAlarmEmphasisMode: SPC String Constant: "ALARM_HIGHLIGHT_SYMBOL"
 BackgroundColor1: Color String constant: "WHITE"

HeaderStringsLevel

Example:
"HeaderStringsLevel": "HEADER_STRINGS_LEVEL3",

The input header strings display has four sub-levels that display increasing levels of information. The
input header strings display level is set using the charts HeaderStringsLevel property. Strings that can be
displayed are: Title, PartNumber, ChartNumber, DateString, PartName, Operation, Machine,
SpecificationLimits, Gauge, UnitOfMeasure, ZeroEquals and DateString. The four levels and the
information displayed is listed below:

HEADER_STRINGS_LEVEL0 Display no header information
HEADER_STRINGS_LEVEL1 Display minimal header information: Title, PartNumber,

ChartNumber, DateString
HEADER_STRINGS_LEVEL2 Display most header strings: Title, PartNumber, ChartNumber,

PartName, Operation, Operator, Machine, DateString
HEADER_STRINGS_LEVEL3 Display all header strings: Title, PartNumber, ChartNumber,

DateString, PartName, Operation, Machine, SpecificationLimits,
Gauge, UnitOfMeasure, ZeroEquals and DateString

90

EnableInputStringsDisplay

Example:
 "EnableInputStringsDisplay": true

This turns on/off the header part of the table. If false, same as "HeaderStringsLevel":
"HEADER_STRINGS_LEVEL0".

EnableCategoryValues (EnableSampleValues also works)

Example:
 "EnableCategoryValues": true

This turns on/off the display of the sample value data for each sample subinterval.

EnableCalculatedValues

Example:
 "EnableCalculatedValues": true

This turns on/off the display of the calculated values for each sample subinterval.

EnableProcessCapabilityValues

Example:
 "EnableProcessCapabilityValues": true

This turns on/off the display of the process capability values for each sample subinterval.

EnableTotalSamplesValues

Example:
 "EnableTotalSamplesValues": true

This turns on/off the display of the total number of samples for each sample subinterval.

EnableNotes

Example:
 "EnableNotes": true

This turns on/off the display of the Notes line of the table.

91

EnableTimeValues

Example:
 "EnableTimeValues": true

This turns on/off the display of the Time line of the table

EnableDataToolTip

Example:
 "EnableDataToolTip": true

This turns on/off the of the data tooltip for the charts.

EnableNotesToolTip

Example:
 "EnableNotesToolTip": true

This turns on/off the of the Notes tooltip for the charts.

TableBackgroundMode

Example:
 "TableBackgroundMode": "TABLE_NO_COLOR_BACKGROUND"

The default table background uses the accounting style green-bar striped background. You can change
this using the TableBackgroundMode property. Set the value to one of the TableBackgroundMode
constants.

TABLE_NO_COLOR_BACKGROUND
Constant specifies that the table does not use a background color.

TABLE_SINGLE_COLOR_BACKGROUND
Constant specifies that the table uses a single color for the background (backgroundColor1)

TABLE_STRIPED_COLOR_BACKGROUND
Constant specifies that the table uses horizontal stripes of color for the background (backgroundColor1
and backgroundColor2)

TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL

92

Constant specifies that the table uses a grid background, with backgroundColor1 the overall background
color and backgroundColor2 the color of the grid lines.

Extracted from the chartDefExampleScripts.js TimeIR example JSON script.

"TableBackgroundMode": "TABLE_STRIPED_COLOR_BACKGROUND",
"BackgroundColor1": "BEIGE",
"BackgroundColor2": "LIGHTGOLDENRODYELLOW",

Extracted from the chartDefExampleScripts.js BatchMedianRangeChart example JSON script

"TableBackgroundMode": "TABLE_SINGLE_COLOR_BACKGROUND",
"BackgroundColor1": "LIGHTGREY",

Extracted from the chartDefExampleScripts.js TimeMeanSigma example JSON script

93

"TableBackgroundMode": "TABLE_NO_COLOR_BACKGROUND",

Extracted from the chartDefExampleScripts.js BatchIR example JSON script

"TableBackgroundMode":"TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL",
"BackgroundColor1": "WHITE",
 "BackgroundColor2": "GRAY",

ChartAlarmEmphasisMode

Example
"ChartAlarmEmphasisMode":"ALARM_HIGHLIGHT_SYMBOL",

94

The scatter plot symbol used to plot a data point in the primary and secondary charts is normally a fixed
color circle. If you turn on the alarm highlighting for chart symbols the symbol color for a sample
interval that is in an alarm condition will change to reflect the color of the associated alarm line. In the
example above, a low alarm (blue circle) occurs at the beginning of the chart and a high alarm (red
circle) occurs at the end of the chart. Alarm symbol highlighting is turned on by default. To turn it off
use the ALARM_NO_HIGHLIGHT_SYMBOL constants.

TableAlarmEmphasisMode

Example
"TableAlarmEmphasisMode":"ALARM_HIGHLIGHT_BAR",

The entire column of the data table can be highlighted when an alarm occurs. There are four modes
associated with this property:

ALARM_HIGHLIGHT_NONE No alarm highlight
ALARM_HIGHLIGHT_TEXT Text alarm highlight
ALARM_HIGHLIGHT_OUTLINE Outline alarm highlight
ALARM_HIGHLIGHT_BAR Bar alarm highlight

95

The example above uses the ALARM_HIGHLIGHT_BAR mode.

The example above uses the ALARM_HIGHLIGHT_TEXT mode

The example above uses the ALARM_HIGHLIGHT_OUTLINE mode. In the table above, the column
outlines in blue and red reflect what is actually displayed in the chart, whereas in the other
TableAlarmEmphasisMode examples the outline just shows where the alarm highlighting occurs.

The default mode is ALARM_HIGHLIGHT_NONE mode.

ChartData

ChartData
Title: String: ""
PartNumber: String: ""
ChartNumber: String: ""
PartName: String: ""
Operation: String: ""
SpecificationLimits: String: ""
Operator: String: ""
Machine: String: ""
Gauge: String: ""
UnitOfMeasure: String: ""
ZeroEquals: String: ""
DateString: String: ""
NotesMessage: String: ""

96

ProcessCapabilitySetup
LSLValue: double: 0
USLValue: double: 1
EnableCPK: boolean: false
EnableCPM: boolean: false
EnablePPK: boolean: false
EnableCPL: boolean: false
EnableCPU: boolean: false
EnablePPL: boolean: false
EnablePPU: boolean: false

SampleItemDecimals: integer: 2
CalculatedItemDecimals: integer: 2
ProcessCapabilityDecimals: integer: 2
CustomTimeFormatString: String: ""
TimeFormat: SPC String constant: "TIMEDATEFORMAT_24HM"

ChartData is underneath the TableSetup object. It has a list of properties which control the strings
displayed in the top (header) section of the table.

DateHeader Set the header for the dateString field.
DateString Set data table date string.
Gauge Set data table Gauge string.
Machine Set data table machine string.
NotesMessage Set data table notes message string.
Operation Set data table operation string.
PartName Set data table part name string.
PartNumber Set data table part number string.
SpecificationLimits Set data table specification limits string.
Operator Set data table operator string.
Title Set data table title string.
UnitOfMeasure Set data table unit of measure string.
ZeroEquals Set data table zero equals string.

Example

 "ChartData": {
 "Title": "Variable Control Chart (X-Bar R)",
 "PartNumber": "283501",
 "ChartNumber": "17",
 "PartName": "Transmission Casing Bolt",
 "Operation": "Threading",
 "SpecificationLimits": "27.0 to 35.0",
 "Operator": "J. Fenamore",
 "Machine": "#11",
 "Gauge": "#8645",
 "UnitOfMeasure": "0.0001 inch",
 "ZeroEquals": "zero",
 "DateString": "7/04/2013",
 "NotesMessage": "Control limits prepared May 10",
 "NotesHeader": "NOTES"

97

 }

The above properties represent the values of the fields displayed on the screen. There are also static
properties and values which control the label displayed in front of the ChartData field values. If you
want to customize these values, see the chapter on static initializations.

98

7. SPC Chart Setup

PrimaryChartSetup
 EnableChart: boolean: true
 XAxis
 XAxisLabels
 YAxisLeft
 YAxisLeftLabels

 FrequencyHistogram
 PlotMeasurementValues: boolean: false
 LineMarkerPlot
 GraphBackground
 PlotBackground
 ControlLimits

 Target
 LCL3
 UCL3
 123SigmaControlLimits
 AddControlRules
 SpecifyControlLimitsUsingMeanAndSigma

SpecificationLimits
 LowSpecificationLimit
 HighSpecificationLimit

SecondaryChartSetup

SPC charts are the one or two charts which appear under the SPC table. They represent the graphical
interpretation of the SPC data. Most of the variable control charts use two charts. For example, the X-
Bar R chart (also called a Mean Range chart, MEAN_RANGE_CHART) includes a primary chart which plots
the sample interval mean values and a secondary chart which plots the sample interval range values. In
the primary chart, sometimes the median stands in for the range (MEDIAN_RANGE_CHART), because before
everyone stated using computers for SPC, the median was easier to calculate by hand than the mean.
Also, in some primary charts (EWMA, MA, MAMS, MAMR), a moving average across sample
intervals is used, to reduce spurious out of control signals due to noise. In the secondary chart,
sometimes the sample standard deviation, or variance, is used instead of the range. There are variable
control charts which also use a single chart, rather than a synchronized pair of charts. These include the
some of the moving average charts (EWMA, MA) and the tabular CuSum chart (TABSUB_CHART).
All of the attribute control charts use a single chart.

There are are also a couple of auxiliary charts, while used extensively in SPC, are not classified as SPC
charts for the purposes of this chapter. They do not share a the common structure as the other SPC charts
and cannot be programmed under the SPCChart object of the defining JSON script. These two charts
have their own defining structure, and are programmed under their own JSON blocks
(FrequencyHistogram and ParetoChart), defined in Chapter 17 and 18.

99

Once the initial chart type is defined, a long list of default properties, representing common usage for the
selected chart type, are set automatically. You can modify the default setup using JSON. Note, you only
need to specify a JSON property:value pair if you want to change a property from it's default.

Enable Chart

PrimaryChartSetup
 EnableChart: boolean: true

Set to true by default, set the EnableChart property to false and the associated chart (Primary or
Secondary) will not display. This is used almost 100% of the time to turn off the secondary chart (a
range or sigma chart in the case of Variable control charts), leaving just the primary chart occupying the
entire chart area.

"SecondaryChartSetup": {
 "EnableChart": false
 }

Axes
Most of the options associated with the x- and y-axes, and axes labels, are set automatically, based on
the range and magnitude of the data values being plotted, and the position of the scroll bar. What you are
left with are basic attribute settings (color and line width), and some format settings in the case of a
time-based x-axis.

XAxis

XAxis
LineColor: Color String constant: "BLACK"
LineWidth: double: 1

LineColor

Set the line color using one of the color constant strings

LineWidth

Set the line width to something other than the default value of 1

Example
"XAxis": {

100

 "LineColor": "BLUE",
 "LineWidth": 3
 },

XAxisLabels

XAxisLabels
Font

Name: String: "sans-serif"
Size: double: 12
Style: SPC String Constant: "PLAIN"

TextColor: Color String constant: "BLACK"
Rotation: double: 0
Format: SPC String constant: "TIMEDATEFORMAT_24HM"
CustomFormatString: String: ""
OverlapLabelMode: SPC String constant: "OVERLAP_LABEL_STAGGER"
AxisLabelMode: SPC String constant: "AXIS_LABEL_MODE_DEFAULT"

Font

Name

Set the axis labels font family to something other than the default "sans-serif". Follow the font
naming guidelines detailed in Static Properties chapter, under DefaultTableFont

Size

Font size in points.

Style

Use of the style string constants: "Plain", "Normal", "Bold","Italic","Bold Italic".

TextColor

Color of the axis labels. Use one of the string color constants.

Rotation

Rotate the labels about their horizontal postiion. Specify using an integer value of degrees

Format

Select one of our predefined time/date formats. Use one of the SPC string constants.

CustomFormatString

Specify your own time/date string, following

OverlapLabelMode

Specifies a repositioning strategy to use if the axis labels are so close together they start to overlap. Use
one of the overlap label constants: OVERLAP_LABEL_STAGGER,
OVERLAP_LABEL_DELETE, or OVERLAP_LABEL_DRAW.

101

AxisLabelMode

Set labeling mode of the x-axis. Use AXIS_LABEL_MODE_DEFAULT
for the default time labeling for Time-based controls charts and numeric for Batch-based controls charts.
Use AXIS_LABEL_MODE_STRING to add user-defined labels specified using the BatchIDString of
the SampleData block. Use AXIS_LABEL_MODE_TIME to table the axis with the time stamp of the
associated record.

Example
"XAxisLabels": {
 "AxisLabelMode": "AXIS_LABEL_MODE_STRING"

 },

YAxisLeft

YAxisLeft
LineColor: Color String constant: "BLACK"

 LineWidth: double: 1

LineColor

Set the line color using one of the color constant strings

LineWidth

Set the line width to something other than the default value of 1

MinValue

The minimum value of the y-axis

MaxValue

The maximum value of the y-axis

It you set the MinValue or MaxValues for the y-axis, those values will only stick if you do not call the
AutoScaleYAxes method. Otherwise, the values for the axis minimum and maximum will be calculated
to be inclusive of of the data values and control limits in the graph.

Example

"YAxisLeft": {
 "LineColor": "GREEN",
 "LineWidth": 3

 },

YAxisLeftLabels

YAxisLeftLabels

102

Font
Name: String: "sans-serif"
Size: double: 12
Style: SPC String Constant: "PLAIN"

TextColor: Color String constant: "BLACK"
Rotation: double: 0
Format: constant(String)
OverlapLabelMode: SPC String constant: "OVERLAP_LABEL_STAGGER"

 Decimal: integer: 1

Font

Name

Set the axis labels font family to something other than the default "sans-serif". Follow the font
naming guidelines detailed in Static Properties chapter, under DefaultTableFont

Size

Font size in points.

Style

Use of the style string constants: "Plain", "Normal", "Bold","Italic","Bold Italic".

TextColor

Color of the axis labels. Use one of the string color constants.

Rotation

Rotate the labels about their horizontal postiion. Specify using an integer value of degrees

Format

Select one of our predefined time/date formats. Use one of the SPC string constants.

CustomFormatString

Specify your own time/date string, following

OverlapLabelMode

Specifies a repositioning strategy to use if the axis labels are so close together they start to overlap. Use
one of the overlap label constants: OVERLAP_LABEL_STAGGER,
OVERLAP_LABEL_DELETE, or OVERLAP_LABEL_DRAW.

Decimal

Specify the decimal precision for a numeric axis

Example

"YAxisLeftLabels": {

103

 "TextColor": "RED",
 "Font": {
 "Size": 14,
 "Style": "BOLD"
 }
 },

YAxisRight

YAxisRight
LineColor: Color String constant: "BLACK"
LineWidth: double: 1

LineColor

Set the line color using one of the color constant strings

LineWidth

Set the line width to something other than the default value of 1.

The minimum and maximum value of the right y-axis tracks the left y-axis. Do not try and set
independent values.

Example

"YAxisRight": {
 "LineColor": "GREEN",
 "LineWidth": 3

 },

FrequencyHistogram

FrequencyHistogram
EnableDisplayFrequencyHistogram: boolean: true
PlotBackgroundColor : Color String constant: "WHITE"
BarColor: Color String constant: "LIGHTBLUE"

EnableDisplayFrequencyHistogram

Set to false to disable the frequency displayed to the left of the chart area.

PlotBackgroundColor

Specify the color of the frequency histogram plot area. Use on of the string color constants.

BarColor

Specify the color of the frequency histogram bars. Use on of the string color constants.

104

PlotMeasurementValues

PlotMeasurementValues: boolean: false

PlotMeasurementValues

Set to true to plot each sample of a sample interval as a scatter plot symbol.

Example

"PlotMeasurmentValues": true,

LineMarkerPlot

LineMarkerPlot
LineColor: Color String constant: "BLUE"
LineWidth: double: 1
SymbolColor: Color String constant: "BLUE"
SymbolFillColor: Color String constant: "BLUE"
SymbolType: SPC String constant: "CIRCLE"

LineColor

Specify the color of the connecting the symbols of the charts line marker plot. Use one of the string
color constants.

LineWidth

Specify the line width of the connecting the symbols of the charts line marker plot.

SymbolColor

Specify the outline color of the line marker plot symbol.

SymbolFillColor

Specify the fill color of the line marker plot symbol.

SymbolType

Specify the symbol type of the line marker plot. Use one of the SPC Chart string constants:
NOSYMBOL, SQUARE, UPTRIANGLE, DOWNTRIANGLE ,DIAMOND, CROSS, PLUS, STAR,
LINE, HBAR, VBAR, BAR3D, CIRCLE.

Example
"LineMarkerPlot": {

 "LineColor": "GREEN",
 "LineWidth": 2,
 "SymbolColor": "SPRINGGREEN",
 "SymbolFillColor": "SPRINGGREEN",
 "SymbolType": "CIRCLE"

105

 },

GraphBackground

GraphBackground
FillColor: Color String constant: "WHITE"
BackgroundMode: SPC String constant: "SIMPLECOLORMODE"
GradientStartColor: Color String constant: "WHITE"
GradientStopColor: Color String constant: "LIGHTGRAY"

This property defines background properties of the graph background.

FillColor

Specify the background color for solid fills (BackgroundMode = SIMPLECOLORMODE)

BackgroundMode

Specify the background mode of the background. Use one of the SPC chart string constants:
SIMPLEGRADIENTMODE or SIMPLECOLORMODE.

GradientStartColor

If SIMPLEGRADIENTMODE is specified as the BackgroundMode, specify the starting gradient color.

GradientStopColor

If SIMPLEGRADIENTMODE is specified as the BackgroundMode, specify the ending gradient color.

"GraphBackground": {
 "FillColor": "BROWN",
 "BackgroundMode": "SIMPLECOLORMODE"
 },

PlotBackground

PlotBackground
FillColor: Color String constant: "WHITE"
BackgroundMode: SPC String constant: "SIMPLECOLORMODE"
GradientStartColor: Color String constant: "WHITE"
GradientStopColor: Color String constant: "LIGHTGRAY"

This property defines background properties of the plot area background.

FillColor

Specify the background color for solid fills (BackgroundMode = SIMPLECOLORMODE)

BackgroundMode

Specify the background mode of the background. Use one of the SPC chart string constants:
SIMPLEGRADIENTMODE or SIMPLECOLORMODE.

106

GradientStartColor

If SIMPLEGRADIENTMODE is specified as the BackgroundMode, specify the starting gradient color.

GradientStopColor

If SIMPLEGRADIENTMODE is specified as the BackgroundMode, specify the ending gradient color.

Example
"PlotBackground": {

 "FillColor": "BROWN",
 "BackgroundMode": "SIMPLECOLORMODE"
 },

Control Limits

ControlLimits
 Font

 Name: String: "sans-serif"
 Size: double: 12

Style: SPC String Constant: "PLAIN"
 DefaultLimits [boolean: true, boolean: true]

SetLimits: [double: 0, double: 0, double 0]
 Decimal: integer: 1

 ZoneFill: boolean: false
 ZoneColors: [

Color String constant: "ORANGERED",
Color String constant: "LIGHTGOLDENRODYELLOW",
Color String constant: "LIGHTGREEN"

]
 Target
 LineColor: Color String constant: "GREEN"
 TextColor: Color String constant: "BLACK"
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "XBAR"
 EnableAlarmLine: boolean: true
 EnableAlarmChecking : boolean: true
 LCL3
 LineColor: Color String constant
 TextColor: Color String constant
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "LCL"
 EnableAlarmLine: boolean: true
 EnableAlarmChecking : boolean: true

 EnableAlarmLineText: String: true
 UCL3
 LineColor: Color String constant
 TextColor: Color String constant
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: UCL
 EnableAlarmLine: boolean: true

107

 EnableAlarmChecking : boolean: true
 EnableAlarmLineText: String: true

 123SigmaControlLimits
 Target: double: 0
 LCL3Value: double: 0
 UCL3Value: double: 0
 AlarmTest12: boolean: true
 EnableAlarmLine: boolean: true
 EnableAlarmChecking: boolean: true
 EnableAlarmLineText: boolean: true

NamedRuleSet
 RuleSet: SPC string constant
 RuleEnable [boolean, boolean …]
 CustomizeRules: [{

 "RuleNumber": 15,
 "M": 18,
 "N": 15

},

 { "RuleNumber": 15,
 "M": 18,
 "N": 15

},
...

]

Font

Specifies the Font used to annotate the control limits on the RHS of the chart.

Font
Name: String: "sans-serif"

 Size: double: 12
Style: SPC String Constant: "PLAIN"

Name

Set the axis labels font family to something other than the default "sans-serif". Follow the font
naming guidelines detailed in Static Properties chapter, under DefaultTableFont

Size

Font size in points.

Style

Use of the style string constants: "Plain", "Normal", "Bold","Italic","Bold Italic".

Example
"Font": {

 "Size": 10,
"Style": "PLAIN"

 },

108

DefaultLimits

DefaultLimits [boolean: true, boolean: true]

Specifies whether default UCL and LCL limits are enabled.

DefaultLimits is an array of two booleans.

DefaultLimits[0]

Set to false to disable the checking of the default +- 3 Sigma limits, also known as UCL (upper control
limits) and LCL (lower control limit).

DefaultLimits[1]

Set to false to disable drawing the +- 3 Sigma limits lines and associated text.

Example
"DefaultLimits": [false, false],

SetLimits

SetLimits: [target: double:0 , lcl: double: 0, hdl: double: 0]

A quick way to set the three limits for a chart: Target, LCL (low control limit) and UCL (upper control
limit).

Example

"SetLimits":[30.0, 25.0, 35.0],

Decimal

Decimal: integer: 1

Decimal

Set to the decimal precision to display the limit values.

109

Example

"Decimal":2,

ZoneFill

ZoneFill: boolean: false

Set to true and the area between the control limit lines are filled with a solid color

ZoneColors

ZoneColors: [
Color String constant: "ORANGERED",
Color String constant: "LIGHTGOLDENRODYELLOW",
Color String constant: "LIGHTGREEN"

]

Set to true and the area between the control limit lines are filled with a solid color

"ZoneColors": ["ORANGERED", "LIGHTGOLDENRODYELLOW","LIGHTGREEN"]

Target

Target
LineColor: Color String constant: "GREEN"
TextColor: Color String constant: "BLACK"
LineWidth: double: 1
LimitValue: double: 0
DisplayString: String: "XBAR"
EnableAlarmLine: boolean: true
EnableAlarmChecking : boolean: true

Set the properties associated with the Target line

LineColor

The line color of the limit line.

TextColor

The text color of the limit line label.

LineWidth

The line width of the limit line

LimitValue

110

Set the limit value.

DisplayString

Set the text string which precedes the numeric value of the limit line label.

EnableAlarmLine

Set to false to disable the alarm line.

EnableAlarmChecking

Set to false to disable the limit testing against the limit value.

Example

"Target": {
 "DisplayString": "TargetXX",
 "EnableAlarmLine": true,
 "EnableAlarmChecking": true,
 "LimitValue": 30,
 "EnableAlarmLineText": true
 },

LCL3

LCL3
LineColor: Color String constant

 TextColor: Color String constant
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "LCL"
 EnableAlarmLine: boolean: true

EnableAlarmChecking : boolean: true
 EnableAlarmLineText: String: true

Set the properties associated with the Lower Control Limit (LCL3) line

LineColor

The line color of the limit line.

TextColor

The text color of the limit line label.

LineWidth

The line width of the limit line

111

LimitValue

Set the limit value.

DisplayString

Set the text string which precedes the numeric value of the limit line label.

EnableAlarmLine

Set to false to disable the alarm line.

EnableAlarmChecking

Set to false to disable the limit testing against the limit value.

EnableAlarmLineText

Set to false to disable the limit line text on the right.

Example
 "LCL3": {
 "DisplayString": "LCLXX",
 "EnableAlarmLine": true,
 "EnableAlarmChecking": true,
 "LimitValue": 25,
 "EnableAlarmLineText": false
 },

UCL3

UCL3
LineColor: Color String constant

 TextColor: Color String constant
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "LCL"
 EnableAlarmLine: boolean: true

EnableAlarmChecking : boolean: true
 EnableAlarmLineText: String: true

Set the properties associated with the Upper Control Limit (UCL3) line

LineColor

The line color of the limit line.

TextColor

The text color of the limit line label.

112

LineWidth

The line width of the limit line

LimitValue

Set the limit value.

DisplayString

Set the text string which precedes the numeric value of the limit line label.

EnableAlarmLine

Set to false to disable the alarm line.

EnableAlarmChecking

Set to false to disable the limit testing against the limit value.

EnableAlarmLineText

Set to false to disable the limit line text on the right.

Example

 "UCL3": {
 "DisplayString": "UCLXX",
 "EnableAlarmLine": false,
 "EnableAlarmChecking": true,
 "LimitValue": 35,
 "EnableAlarmLineText": true
 }

123SigmaControlLimits

123SigmaControlLimits
Target: double: 0
LCL3Value: double: 0
UCL3Value: double: 0
AlarmTest12: boolean: true
EnableAlarmLine: boolean: true
EnableAlarmChecking: boolean: true
EnableAlarmLineText: boolean: true

This method will display control limits for +-1, +-2, and +-3 Sigma, given the target value and the LCL3
value and the UCL3 value.

Target

Specify the target (centerline) value for chart.

113

LCL3Value

Specify the LCL3 (- 3-sigma low control limit) value for chart.

UCL3Value

Specify the UCL3 (+ 3-sigma upper control limit) value for chart.

AlarmTest12

Set to true if you want limit testing (1 out of one outside limit) for +-1 and +-2 sigma control limit lines.

EnableAlarmLine

Set to false to disable the limit lines

EnableAlarmChecking

Set to false to disable the limit testing

EnableAlarmLineText

Set to false to disable the limit line text

Example

"123SigmaControlLimits": {
"Target": 30,
"LCL3Value": 25,
"UCL3Value": 30,
"AlarmTest12": true ,

 "EnableAlarmLine": true,
 "EnableAlarmChecking": true,
 "EnableAlarmLineText": true

}

NamedRuleSet

NamedRuleSet
RuleSet: string constant
RuleEnable [boolean, boolean …]
CustomizeRules: [{

 "RuleNumber": 15,
 "M": 18,
 "N": 15

},

 { "RuleNumber": 15,
 "M": 18,
 "N": 15

},
...

]

114

The NameRuleSet property will invoke a complete set of control rules based one of following standard
rule sets: BASIC_RULES, WECO_RULES,WECOANDSUPP_RULES,
NELSON_RULES,AIAG_RULES, JURAN_RULES, HUGHES_RULES,GITLOW_RULES,
WESTGARD_RULES,and DUNCAN_RULES. For a complete discussion of named control rules, see
chapter xxxx.

RuleSet

One of the named rule identifiers: BASIC_RULES, WECO_RULES,WECOANDSUPP_RULES,
NELSON_RULES,AIAG_RULES, JURAN_RULES, HUGHES_RULES,GITLOW_RULES,
WESTGARD_RULES,and DUNCAN_RULES.

RuleEnable

An array of boolean, one for each named rule in the rule set. All of the rules are enabled by default. This
permits you to disable specific rules.

CustomizeRules

An array, one for each rule you want to modify in the ruleset. Each block in the array contains the rule
number, the M-value (N out of M must exceed the limit value for a violation to occur) and an N-value.

RuleNumber
The rule number (our rule number)

M
The M-value (N out of M must exceed the limit value for a violation to occur)

N
The N-value (N out of M must exceed the limit value for a violation to occur)

Example

"NamedRuleSet":
{
 "RuleSet": "WECO_RULES",
 "RuleEnable": [true, true, false, true, false, true, true, true],
 "CustomizeRules: [{
 "RuleNumber": 3,
 "M": 2,
 "N": 1

}
 [

}

115

AddControlRules

AddControlRules
[{

 RuleSet: : SPC String constant: "BASIC_RULES"
 RuleNumber: integer: 2
 EnableAlarmLine: boolean: true
 EnableAlarmChecking: boolean: true
 EnableAlarmLineText: String: true

 M: integer: 1
 N: integer: 1

},
{

RuleSet: : SPC String constant: "BASIC_RULES"
 RuleNumber: integer: 2
 EnableAlarmLine: boolean
 EnableAlarmChecking: boolean
 EnableAlarmLineText: String

 M: integer: 1
 N: integer: 1

}, ...

]

The AddControlRules property is an array of control rule specifications. Since it is an array, you can add
as many control rules as you want. Each specification block in the array defines one control rule. Note
how the control rule array is bracketed by [], signifying the start and and of the array. Each block
element in the array is bracketed using { }.

A control rule block element has the following parameters:

RuleSet

One of the named rule identifiers: BASIC_RULES, WECO_RULES,WECOANDSUPP_RULES,
NELSON_RULES,AIAG_RULES, JURAN_RULES, HUGHES_RULES,GITLOW_RULES,
WESTGARD_RULES, DUNCAN_RULES and CUSTOM_TEMPLATE_BASED_RULE.

RuleNumber

The rule number (our rule number). If the RuleSet is of type CUSTOM_TEMPLATE_BASED_RULE,
then the RuleNumber specifies the template number of the desired template.

EnableAlarmLine

Enable the drawing of the limit line for the control rule.

EnableAlarmChecking

Enable alarm checking for the the control rule.

EnableAlarmLineText

Enable the drawing of the limit text for the control rule.

116

M

The M-value (N out of M must exceed the limit value for a violation to occur,)

N

The N-value (N out of M must exceed the limit value for a violation to occur)

If the RuleSet is CUSTOM_TEMPLATE_BASED_RULE, the following parmeters are also valid:

SigmaLevel

The sigma level of the desired control rule template.

A multi-rule example would look something like:

"AddControlRules": [
 {
 "RuleSet": "WECO_RULES",
 "RuleNumber": 2
 },
 {
 "RuleSet": "WECO_RULES",
 "RuleNumber": 3
 },
 {
 "RuleSet": "NELSON_RULES",
 "RuleNumber": 12
 },
 {
 "RuleSet": "JURAN_RULES",
 "RuleNumber": 9,

"EnableAlarmLine": false,
 "EnableAlarmChecking": true,
 "EnableAlarmLineText": false
 }

]

SpecifyControlLimitsUsingMeanAndSigma

SpecifyControlLimitsUsingMeanAndSigma
Mean: double: 1
Sigma: double: 1

If you want to explicitly set the limits you must know the historical process mean (also called the center
line) and the historical process sigma. You may already know your process sigma, or you may need to
calculate it as 1/3 * (UCL – process mean), where UCL is your historical +3-sigma upper control limit.
Once you have those two values, everything else is automatic. Just invoke

117

SpecifyControlLimitsUsingMeanAndSigma method. It will run through all of the control limit records
and fill out the appropriate limit values and other critical parameters.

Mean

Specify the process mean.

Sigma

Specify the process sigma.

The center line value and sigma have different meanings for the Primary and Secondary charts. So the
SpecifyControlLimitsUsingMeanAndSigma and Sigma applies to only one at a time. If you use it for
the secondary chart control limits, use your historical center line value for the secondary chart type you
are using. Calculate the sigma value as 1/3 * (UCL – center line), where UCL is your historical +3-
sigma upper control limit for your secondary chart.

"SpecifyControlLimitsUsingMeanAndSigma": {
"Mean": 30,
"Sigma": 1.666

}

SpecificationLimits

SpecificationLimits
Font

Name: String: "sans-serif"
Size: double: 12
Style: SPC String Constant: "PLAIN"

Decimal: integer: 1
LowSpecificationLimit

LineColor: Color String constant: "BLUE"
 TextColor: Color String constant: "BLACK"
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "LSL"
 EnableAlarmLine: boolean: true

EnableAlarmChecking : boolean: true
 EnableAlarmLineText: String: true

HighSpecificationLimit: double
LineColor: Color String constant: "RED"

 TextColor: Color String constant: "BLACK"
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "USL"
 EnableAlarmLine: boolean: true

EnableAlarmChecking : boolean: true

118

Font

Specifies the Font used to annotate the control limits on the RHS of the chart.

Font
Name: String: "sans-serif"
Size: double: 12
Style: SPC String Constant: "PLAIN"

Name

Set the axis labels font family to something other than the default "sans-serif". Follow the font naming
guidelines detailed in Static Properties chapter, under DefaultTableFont

Size

Font size in points.

Style

Use of the style string constants: "Plain", "Normal", "Bold","Italic","Bold Italic".

Decimal

Decimal: integer: 1

Decimal

Set to the decimal precision to display the limit values.

LowSpecificationLimit

LowSpecificationLimit
LineColor: Color String constant: "BLUE"
TextColor: Color String constant: "BLACK"
LineWidth: double: 1
LimitValue: double: 0
DisplayString: String: "LSL"
EnableAlarmLine: boolean: true
EnableAlarmChecking : boolean: true

 EnableAlarmLineText: String: true

Set the properties associated with the Low Specification Limit (LSL) line

LineColor

The line color of the limit line.

TextColor

119

The text color of the limit line label.

LineWidth

The line width of the limit line

LimitValue

Set the limit value.

DisplayString

Set the text string which precedes the numeric value of the limit line label.

EnableAlarmLine

Set to false to disable the alarm line.

EnableAlarmChecking

Set to false to disable the limit testing against the limit value.

EnableAlarmLineText

Set to false to disable the limit line text on the right.

Example

"SpecificationLimits":
{
 "LowSpecificationLimit":
 {

"LimitValue": 15,
 "LineColor": "BLUE",

"DisplayString": "LSLX"
 },

"HighSpecificationLimit":
 {

"LimitValue": 40,
 "LineColor": "RED",

"DisplayString": "HSLX"

 }
}

HighSpecificationLimit

HighSpecificationLimit
LineColor: Color String constant: "RED"
TextColor: Color String constant: "BLACK"
LineWidth: double: 1
LimitValue: double: 0
DisplayString: String: "USL"
EnableAlarmLine: boolean: true
EnableAlarmChecking : boolean: true

120

Set the properties associated with the High Specification Limit (HSL) line

LineColor

The line color of the limit line.

TextColor

The text color of the limit line label.

LineWidth

The line width of the limit line

LimitValue

Set the limit value.

DisplayString

Set the text string which precedes the numeric value of the limit line label.

EnableAlarmLine

Set to false to disable the alarm line.

EnableAlarmChecking

Set to false to disable the limit testing against the limit value.

EnableAlarmLineText

Set to false to disable the limit line text on the right.

Example

"SpecificationLimits":
{
 "LowSpecificationLimit":
 {

"LimitValue": 15,
 "LineColor": "BLUE",

"DisplayString": "LSLX"
 },

"HighSpecificationLimit":
 {

"LimitValue": 40,
 "LineColor": "RED",

"DisplayString": "HSLX"

 }
}

121

SecondaryChartSetup

SecondaryChartSetup

The SecondaryChartSetup is same as PrimaryChartSetup, except that there is no NamedRuleSet block.
You should not try and use any of the named rules, either individually, or in a set, in a secondary chart,
because they were never intended for use in a secondary chart. All named control rules apply to the
tracking of the measured variable in the Primary chart.

122

8. Adding Data to an SPC Chart

SPCChart
SampleData

 SampleIntervalRecords
DataSimulation

 StartCount: integer: 0
 Count: integer: 20
 Mean: double: 1
 Range: range: 1

ExcludeRecords: [integer, integer, ..]
IncludeRecords: [integer, integer, ..]
ResetSPCChartData

A SPC Chart can be defined prior to adding any data to it. In that case, you will have to at least specify
reasonable values for the control limits. Otherwise, the chart auto-scaling of the y-axes will not work
properly, because the chart will have nothing to auto-scale against. Since you have no data, you can't use
the AutoScaleControlLimits, since that requires that data already be entered into the chart. The best way
to establish some default values for the control limits is to use the
SpecifyControlLimitsUsingMeanAndSigma property, discussed in the previous chapter. That will set
values for all of the sigma-based control limits, and establish some initial y-scaling values.

Data is added to the charting using the SampleData property. It supports the following options:

• One or more sample interval records, using an array structure.
• Each sample interval record has the following properties:

◦ TimeStamp
◦ BatchCount
◦ Note
◦ Batch ID string
◦ Sample sub group size for variable control limits
◦ Sample values: an array of numeric values, one for each sample in the sample

subgroup
• Data simulation for all chart types
• Exclude one or more sample records from control limit calculations
• Include (or re-include previous excluded) sample records
• Reset SPC Data

SampleIntervalRecords

SampleIntervalRecords
[{

123

TimeStamp: double: date/time in milliseconds
BatchCount: integer: 1
BatchNumber: integer: 1
Note: String: ""
BatchIDString: String: ""
VariableControlLimits: [double:1,double:1, ...]
SampleSubgroupSize_VSS: integer: -1
SampleValues [double, double,...]

},
{

TimeStamp: double: date/time in milliseconds
BatchCount: integer: 2
BatchNumber: integer: 2

 Note: String: ""
 BatchIDString: String: ""
 VariableControlLimits: [double:1,double:1, ...]
 SampleSubgroupSize_VSS: integer: -1

SampleValues [double, double,...]
}, …

]

TimeStamp

Since there is no reliable standard across browsers for time/date data, this value is expressed as the Unix
standard of elapsed milliseconds since Thursday, 1 January 1970. The TimeStamp positions the sample
data on the x-axis for time-based SPC charts. Not so for batch-based SPC charts. There the sample data
is positioned on the x-axis using the batch number. In batch-based SPC charts, the time stamp value for
each batch (in regular HH:MM:SS format) can optionally be displayed in the table above the charts, and
they can also be used as tick mark labels, replacing the batch number labels.

Javascript Date Object
In Javascript, you can process time/date values using the Javascript Date object. The standard Javascript
constructors for the Date class are:

new Date() // current date and time
new Date(value) //milliseconds since 1970/01/01
new Date(dateString)
new Date(year, month, day, hours, minutes, seconds, milliseconds)

where:

value Integer value representing the number of milliseconds since 1 January 1970 00:00:00
UTC (Unix Epoch).

dateString String value representing a date. The string should be in a format recognized by the
Date.parse() method (IETF-compliant RFC 2822 timestamps and also a version of
ISO8601).

year Integer value representing the year. The year must always be provided in full (e.g. 98 is
treated as 98, not 1998).

month Integer value representing the month, beginning with 0 for January to 11 for December.
day Integer value representing the day of the month.

124

hour Integer value representing the hour of the day.
minute Integer value representing the minute segment of a time.
second Integer value representing the second segment of a time.
millisecond Integer value representing the millisecond segment of a time.

Most parameters above are optional. Not specifying, causes 0 to be passed in. Once a Date object is
created, a number of methods allow you to operate on it. Most methods allow you to get and set the
year, month, day, hour, minute, second, and milliseconds of the object, using either local time or UTC
(universal, or GMT) time. All dates are calculated in milliseconds from 01 January, 1970 00:00:00
Universal Time (UTC) with a day containing 86,400,000 milliseconds. Some examples of initiating a
date:

var today = new Date();
var d1 = new Date("November 15, 2013 11:13:00");
var d2 = new Date(2013,10,15);
var d3 = new Date(2013,10,15,11,13,0);

When converting a Date object into a value for use as a time stamp in one of our JSON scripts, just use
the Date objects getTime function.

var timestamp = d3.getTime();

If your charts JSON definition was in the MediumSimpleDataUpdateObject object, then you can set
the time stamp using code similar to below:

MediumSimpleDataUpdateObject.SPCChart.SampleData.SampleIntervalRecords[i].TimeStamp =
timestamp;

In our SPCMediumSimple.html example, we use the following code to calculate a new time stamp
which is:

var sampleintervalmilliseconds = 900000;

var timestamp = new
MediumSimpleDataUpdateObject.SPCChart.SampleData.SampleIntervalRecords[i].TimeStamp +
sampleintervalmilliseconds);

MediumSimpleDataUpdateObject.SPCChart.SampleData.SampleIntervalRecords[i].TimeStamp =
timestamp.getTime();

where the previous time stamp is retrieved from the chart update JSON script, a new Date object created
with it by adding in an additional 900000 milliseconds, representing 15 minutes (1000 * 60 * 15 =
90000). The new Date is then written back to the JSON records as the getTime() value, which returns
milliseconds.

This is exactly the same as the following code, which does not use the Date object at all:

125

MediumSimpleDataUpdateObject.SPCChart.SampleData.SampleIntervalRecords[i].TimeStamp
+= sampleintervalmilliseconds;

Since Date is a standard Javascript object, you will find countless examples of how to manipulate
time/date values on the web. Here are a couple of tutorials:

http://msdn.microsoft.com/en-us/library/ie/ee532932(v=vs.94).aspx
http://www.techrepublic.com/article/manipulate-time-and- date -values-with-javascripts- date -object/

Special Note on the use of Time Stamps
If you are using a Time-based SPC Chart, then you MUST specify time stamps which are monotonic
and evenly spaced. Monotonic means that the values always increase. You can' t enter data from today,
followed by data from yesterday. That is going backward in time and is non-monotonic. The Time-based
control charts also require that the time stamps increase at a regular rate, i.e. 15 minutes. In time stamp
units (milliseconds), this would be an increase of (15 * 60 * 1000 = 900000) milliseconds per sample
interval. While this time stamp increment does not have to be exact, it should be close, or else the data
plotted in the SPC chart will not line up with the table. You can't enter data from an 8-hour run
yesterday, followed by an 8-hour run today. That would leave large gaps in the chart. If you have
irregular time stamp data, you must use the Batch-based SPC Chart type, which ignores the time stamp
when positioning data points in a chart. See the discussion of InitChartProperties in Chapter 5, SPC
Initial Chart Setup. The Batch-based carts are more flexible than the Time-based charts, and we
recommend everyone use them.

BatchCount

The batch number of the associated sample interval record. The BatchCount value is used if you are
using a batch-based control chart. BatchCount values must be monotonic, meaning they always increase.
You cannot enter in a group of sample intervals from today, with batch numbers 100-200, followed by
another group from yesterday with batch numbers 100-200. It is up to you to sort the batch data into the
proper order.

If you don't think you can keep track of the BatchCount number, don't specify it. The value will
automatically be assigned a value equal to the current number of sample interval records currently in the
system. That will result in valid values.

BatchNumber

Same as BatchCount.

Note

A note which can be attached to the sample interval record, and displayed in the notes field of a sample
interval record in the data table.

BatchIDString

http://www.techrepublic.com/article/manipulate-time-and-date-values-with-javascripts-date-object/
http://www.techrepublic.com/article/manipulate-time-and-date-values-with-javascripts-date-object/
http://www.techrepublic.com/article/manipulate-time-and-date-values-with-javascripts-date-object/
http://www.techrepublic.com/article/manipulate-time-and-date-values-with-javascripts-date-object/
http://www.techrepublic.com/article/manipulate-time-and-date-values-with-javascripts-date-object/
http://msdn.microsoft.com/en-us/library/ie/ee532932(v=vs.94).aspx

126

A batch ID string can be associated with a sample interval. This is used with batch-based control charts.
Instead of labeling the x-axis tick marks with the BatchCount, or the TimeStamp, you can lable it with
the BatchIDString.

VariableControlLimits: [double:1,double:1, …]

SampleSubgroupSize_VSS: integer: -1

SampleValues [double, double,...]

An array of numeric values corresponding to the sample data for a sample interval. The meaning of the
data is specific to the SPC chart type (Variable or Attribute, fixed or variable sample size per sample
interval), so you must take that into account.

SampleValues for Variable Control Charts with a fixed sample size

Applies to variable control charts of type: MEAN_RANGE_CHART, MEDIAN_RANGE_CHART,
INDIVIDUAL_RANGE_CHART, MEAN_SIGMA_CHART, INDIVIDUAL_RANGE_CHART,
EWMA_CHART, MA_CHART, TABCUSUM_CHART.
In variable control charts, each data value in the samples array represents a specific sample in the sample
subgroup. In X-Bar R, X-Bar Sigma, and Median-Range charts, where the sample subgroup size is some
fraction of the total production level, there is one value in the samples array for each measurement
sample in the sample subgroup interval. If the production level is sixty items per hour, and the sample
size is five items per hour, then the graph would be updated once an hour with five items in the samples
array.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628,
 33.95771604022404,
 24.310097827061817,
 28.282642847792765,
 30.2908518818265
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214,
 34.38930645615096,
 28.0203674441636,
 33.27153359969366,
 36.8305571558275
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,

127

 "Note": ""
 },

In an Individual-Range chart, which by definition samples 100% of the production level, the
SampleValues array would only have one value for each update. If the production level is sixty items per
hour, with 100% sampling, the graph would be updated once a minute, with a single value in the
SampleValues array.

SampleValues for Variable Control Charts with a variable sample size

Applies to variable control charts of type: MEAN_SIGMA_CHART_VSS

The X-Bar Sigma chart also comes in a version where variable sample sizes are permitted, As in the
standard variable control charts, there is one value in the SampleValues array for each measurement
sample in the sample subgroup interval. The difference is that the length of the SampleValues array can
change from update to update.
We often hear from those using the X-Bar Sigma as the most universal of the Variable Control Charts.
They feed in variable amounts of data for each sample interval from 1 item, to over 20 items. This is not
a valid use of the X-Bar Sigma chart with variable sample size. An X-Bar sigma chart requires that you
have at least 10-15 samples per sample interval. So don't use it where you expect a low number of
samples in a given sample interval. This is for statistical reasons. For point counts less than 10, using the
range of values within a sample sub-interval is a better way to estimate the process standard deviation
value, than the actual standard deviation for the same sample interval.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "BatchCount": 0,
 "TimeStamp": 1374768344076,
 "Note": "",
 "SampleValues": [
 27.908233086630105,
 31.940402816755082,
 27.55563653827735,
 30.083357069668647,
 33.642341315640614,
 28.72361222739654,
 32.099133969171135,
 26.356050567985285,
 29.31049201044222,
 28.499216431790145,
 31.04435971419966,
 33.2381471474555,
 31.589757172384306,
 32.438862725116614,
 31.53988206474448
]
 },

128

 {
 "BatchCount": 1,
 "TimeStamp": 1374769244076,
 "Note": "",
 "SampleValues": [
 28.749312830468913,
 26.404064179124912,
 33.28922196391206,

 31.694060174687134,
 26.90641611483808,
 31.48391922918815,
 30.209803672319776,
 29.86474359585655,
 32.53515676358969,
 29.12428709515284,
 29.75699541053711,
 31.017198158995903,
 30.224697293173516
]
 },
 {
 "BatchCount": 2,
 "TimeStamp": 1374770144076,
 "Note": "",
 "SampleValues": [
 26.801870534836045,
 27.378134477854075,
 33.08638714532048,
 31.769229875222915,
 32.0028978203766,
 27.226930046247567,
 28.687810832891774,
 33.60598037448174,
 29.262192232690143,
 32.27140254488991,
 32.70426215916774,
 32.02023454576835
]
 },

SampleValues for Attribute Control Charts (p- and np-charts (Fixed Sample Subgroup
Size)

p-chart = FRACTION_DEFECTIVE_PARTS_CHART
or
PERCENT_DEFECTIVE_PARTS_CHART

np-chart = NUMBER_DEFECTIVE_PARTS_CHART

DPMO = NUMBER_DEFECTS_PER_MILLION_CHART

129

In attribute control charts, the meaning of the data in the SampleValues array varies, depending on
whether the attribute control chart measures the number of defective parts (p-, and np-charts), or the
total number of defects (u- and c-charts). The major anomaly is that while the p- and np-charts plot the
fraction or number of defective parts, the table portion of the chart can display defect counts for any
number of defect categories (i.e. paint scratches, dents, burrs, etc.). It is critical to understand that total
number of defects, i.e. the sum of the items in the defect categories for a give sample subgroup, do NOT
have to add up to the number of defective parts for the sample subgroup. Every defective part not only
can have one or more defects, it can have multiple defects of the same defect category. The total number
of defects for a sample subgroup will always be equal to or greater than the number of defective parts.
When using p- and np-charts that display defect category counts as part of the table, where N is the
NumCategories parameter in the InitChartProperties initialization property block, the first N-1 (0.. N-
2) elements of the SampleValues array holds the defect count for each category. The (N)th (or element
N-1 in the array) element of the SampleValues array holds the total defective parts count. For example,
if you initialized the chart with a NumCategories parameter to five, signifying that you had five defect
categories, you would use a SampleValues array sized to six, as in the code below:

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "BatchCount": 0,
 "TimeStamp": 1374768344076,
 "Note": "",
 "SampleValues": [
 3,
 0,
 4,
 2,
 4
]
 },
 {
 "BatchCount": 1,
 "TimeStamp": 1374769244076,
 "Note": "",
 "SampleValues": [
 2,
 2,
 1,
 4,
 6
]
 },
 {
 "BatchCount": 2,
 "TimeStamp": 1374770144076,
 "Note": "",
 "SampleValues": [
 3,
 1,
 3,
 2,
 5
]

130

 },

Updating p-charts (Variable Sample Subgroup Size)

p-chart = FRACTION_DEFECTIVE_PARTS_CHART_VSS,

PERCENT_DEFECTIVE_PARTS_CHART_VSS

First, you must read the previous section (Updating p-charts (Fixed Sample Subgroup Size) and
understand it. Because in the case of the p-chart variable sample subgroup case, filling out that array is
EXACTLY the same as the fixed sample subgroup case. The number of defects in each defect category
go into the first N elements (element 0..N-1) of the samples array. The total number of defective parts go
into last (element N) of the samples array. Specify the size of the sample subgroup associated with a
given update using the ChartData.SampleSubgroupSize_VSS property.

Updating c- and u-charts (Fixed Sample Subgroup Size)
c-chart = NUMBER_DEFECTS_CHART

u-chart = NUMBER_DEFECTS_PERUNIT_CHART

In c- and u-charts the number of defective parts is of no consequence. The only thing tracked is the
number of defects. Therefore, there is no extra array element tacked onto the end of the samples array.
Each element of the samples array represents the total number of defects for a given defect category. If
the NumCategories parameter in the InitChartProperties is initialized to five, the total number of
elements in the samples array should be five. For example:

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "BatchCount": 0,
 "TimeStamp": 1374768344076,
 "Note": "",

 "SampleSubgroupSize_VSS": 5,
 "SampleValues": [
 3,
 0,
 4,
 2,
 3
]
 },
 {
 "BatchCount": 1,
 "TimeStamp": 1374769244076,
 "Note": "",

 "SampleSubgroupSize_VSS": 4,

131

 "SampleValues": [
 2,
 1,
 4,
 1
]
 },
 {
 "BatchCount": 2,
 "TimeStamp": 1374770144076,
 "Note": "",

 "SampleSubgroupSize_VSS": 6,
 "SampleValues": [
 3,
 1,
 3,
 2,
 2,

 4
]
 },

Updating u-charts (Variable Sample Subgroup Size)

u-chart = NUMBER_DEFECTS_PERUNIT_CHART_VSS

First, you must read the previous section (Updating u-charts Fixed Sample Subgroup Size) and
understand it. Because in the case of the u-chart variable sample subgroup case, filling out that array is
EXACTLY the same as the fixed sample subgroup case. The number of defects in each defect category
go into the first N elements (element 0..N-1) of the samples array. Specify the size of the sample
subgroup associated with a given update using the ChartData.SampleSubgroupSize_VSS property.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "BatchCount": 0,
 "TimeStamp": 1374768344076,
 "Note": "",

 "SampleSubgroupSize_VSS": 5,
 "SampleValues": [
 3,
 0,
 4,
 2,
 3
]
 },
 {
 "BatchCount": 1,
 "TimeStamp": 1374769244076,
 "Note": "",

 "SampleSubgroupSize_VSS": 4,
 "SampleValues": [
 2,

132

 1,
 4,
 1
]
 },
 {
 "BatchCount": 2,
 "TimeStamp": 1374770144076,
 "Note": "",

 "SampleSubgroupSize_VSS": 6,
 "SampleValues": [
 3,
 1,
 3,
 2,
 2,

 4
]
 },

While the table portion of the display can display defect data broken down into categories, only the sum
of the defects for a given sample subgroup is used in creating the actual SPC chart.

DataSimulation

DataSimulation
StartCount: integer: 0
Count: integer: 20
Mean: double: 1
Range: range: 1

The data simulation function is useful for testing your chart design, without the need to update the chart
using SampleIntervalRecords. You can simulate data for all of the SPC charts using this method.

StartCount

Specifies the staring BatchCount of the simulation. Simulated data once for a chart, using a
StartingCount of 0, and a Count of 100, you will end up with BatchCount values of 0 to 99. If you add
new simulated data to the chart, you will need to set the StartCount property to 100, so as to not repeat
the BatchCount numbers. The next 100 BatchCount values will then be 100 to 199, without repeating
any BatchCount values.

Count

The number of sample intervals to simulate.

Mean

133

The mean of the sample interval data values.

Range

The range of the sample interval data values.

The DataSimulation method knows what chart type it is, how many samples per sample interval are
needed, and all of the other things specific to the charts. It takes all of that into account when generating
simulation data. You can see the simulated values in the table section of the chart.

"SampleData": {
 "DataSimulation": {

 "StartCount": 0,
 "Count": 50,
 "Mean": 27,
 "Range": 5
 }

},

ExcludeRecords

ExcludeRecords: [integer, integer, ..]

It may be that bad values have found there way into the sample data. In that case you can exclude the
data from being used in SPC Control limit calculations. Enter an array of integer values, specifying the
indicies of the records to exclude.

"ExcludeRecords": [2, 7, 17, 31]

IncludeRecords

IncludeRecords: [integer, integer, ..]

If you exclude records, they remain excluded. Should you decide you need to include them again, use
IncludeRecords.

IncludeRecords: [2, 31]

ResetSPCChartData

ResetSPCChartData

Use this method to reset all of the SampleIntervalRecords to empty.

134

Dynamic Creation of JSON

Typically, the chart creation JSON script will be static, or nearly static. That means you can hand-code a
template for a specific application. You can customize specific properties of the template using standard
Javascript programming. For example, you start with the TimeXBarR example from the
chartdefSimple.js file. All of the property values of the TimeXBarR record variable are filled-out with
default values. But now you want to customize it a bit. You can use standard Javascript to do that,
referencing the fields of the TimeXBarR record variable.

 function defineChartUsingJSON()
 {
 TimeXBarR.SPCChart.TableSetup.ChartData.Title = "QC Mean Range Chart";
 TimeXBarR.SPCChart.TableSetup.ChartData.PartNumber = "122";
 TimeXBarR.SPCChart.TableSetup.ChartData.ChartNumber = "3";
 TimeXBarR.SPCChart.TableSetup.ChartData.PartName = "Widget X23";
 TimeXBarR.SPCChart.TableSetup.ChartData.Operation = "Flange Drilling";
 TimeXBarR.SPCChart.TableSetup.ChartData.Operator = "Mike Holtzman";

 var s = JSON.stringify(TimeXBarR);
 return s;
 }

Data updates, using the SampleData.SampleIntervalRecords property involves appending new elements
to an already existing array. Use the Javascript push function to do that. In the example below, all of the
sample data is stored as an array of records within
TimeXBarR.SPCChart.SampleData.SampleIntervalRecords. Each element of SampleIntervalRecords
contains a structure which contains a SampleValues array, which is an array of values, one for each
sample of a sample interval. So an array of SampleValues is created, and populated with sample data for
a sample interval. That array is combined with BatchCount, TimeStamp, and Note data values in a
SampleIntervalRecord, and that records is appended at the end of
TimeXBarR.SPCChart.SampleData.SampleIntervalRecords using push.

function defineChartUsingJSON()
 {
 var SampleIntervalRecord = {
 "SampleValues": [],

 "BatchCount": 0,
 "TimeStamp": 1371830829074 + 20 * 900000,
 "Note": "" };

 var SampleValues = new Array();

 SampleValues.push(27.53131515148628);
 SampleValues.push(33.95771604022404);
 SampleValues.push(24.310097827061817);
 SampleValues.push(28.282642847792765);
 SampleValues.push(30.2908518818265);

 SampleIntervalRecord.SampleValues = SampleValues;
 TimeXBarR.SPCChart.SampleData.SampleIntervalRecords.push(SampleIntervalRecord);

 var s = JSON.stringify(TimeXBarR);

135

 return s;
 }

136

9. Calculate and Update Methods

Methods
AutoCalculateControlLimits [boolean, boolean]
AutoScaleYAxes [boolean, boolean]
RebuildUsingCurrentData: boolean
UpdateDisplay

The Methods block is a group of routines which should be called after you setup all of the other chart
properties, and update the chart with the most recent data.

AutoCalculateControlLimits

AutoCalculateControlLimits [boolean, boolean]

This method will auto-calculate sigma based control limits, for primary and secondary charts, using
formulas appropriate to each chart type. It uses all of the data currently added to the chart.

The format is pretty flexible. While it is shown as using a boolean array of two elements, it works with
any of the following formats:

No parameters - Calculates control limits for primary chart, and if present, the secondary chart
AutoCalculateControlLimits

One, none-array parameter - Calculates control limits for primary, and if present, the secondary chart
AutoCalculateControlLimits: true

An array parameter of two boolean elements. The first element enables the calculation of control limits
for the primary chart, and the second element enables the calculation of control limits for the secondary
chart.
AutoCalculateControlLimits: [true, false]

Example
"Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true

 }

AutoScaleYAxes

AutoScaleYAxes [boolean, boolean]

This method will auto-scale the y-axes of the primary and secondary chart, taking into account all of the
data added to the chart, all control limits, and all specification limits.

137

The format is pretty flexible. While it is shown as using a boolean array of two elements, it works with
any of the following formats:

No parameters - Auto-scales the y-axis of the primary chart, and if present, the secondary chart)
AutoCalculateControlLimits

One, none-array parameter - Auto-scales the y-axis of the primary chart, and if present, the secondary
chart)
AutoCalculateControlLimits: true

An array parameter of two boolean elements. The first element enables the auto-scale the y-axis for the
primary chart, and the second element enables Auto-scales the y-axis of the primary chart for the
secondary chart.
AutoCalculateControlLimits: [true, false]

RebuildUsingCurrentData

RebuildUsingCurrentData: boolean

If the chart has been changed in way, it needs to be rebuilt in order to for the changes to be visible on the
screen. When you add new data chart using SampleData block (actual or simulated data), you also need
to call RebuildUsingCurrentData for the new data so show up in the chart.

If a boolean parameter is not provided, it is considered true.

"RebuildUsingCurrentData"

is the same as

"RebuildUsingCurrentData": true

UpdateDisplay

UpdateDisplay

This routine forces a redraw of the chart. Normally it is not needed, since the RebuildUsingCurrentData
method is what you use when you make changes to the chart, and then want them displayed. We include
it here just in case it is needed for reasons we cannot predect.

UpdateDisplay

138

10. Variable Control Charts

SPC Variable Control Charts
X-Bar R (Mean and Range),
X-Bar Sigma,
Median and Range,
X-R (Individual Range),
MA (Move Average),
MAMR (Moving Average / Moving Range),
MAMS (Moving Average / Moving Sigma),
EWMA (Exponentially Weighted Moving Average)
CUSum charts

Time-Based and Batch-Based SPC Charts
Creating a Variable Control Chart
Adding New Sample Records for Variable Control Charts
Measured Data and Calculated Value Tables
Process Capability Ratios and Process Performance Indices
Table Strings
Table Background Colors
Table and Chart Fonts
Setting Decimal Precision in the Table
SPC Charts without a Table
Chart Position
SPC Control Limits
Variable SPC Control Limits
Multiple SPC Control Limits
Named Rule Sets
Specification Limits
Chart Y-Scale
Updating Chart Data
Scatter Plots of the Actual Sampled Data
Enable the Chart ScrollBar
SPC Chart Histograms
SPC Chart Data and Notes Tooltips
Enable Alarm Highlighting
AutoLogAlarmsAsNotes

Creating a Batch-Based Variable Control Chart
Batch Control Chart X-Axis Time Stamp Labeling
Batch Control Chart X-Axis User-Defined String Labeling
Batch-based Variable Control Charts
Changing the Batch Control Chart X-Axis Labeling Mode

Changing Default Characteristics of the Chart
Formulas for VariableControl Charts

Variable Control Charts are used with sampled quality data that can be assigned a specific numeric
value, other than just 0 or 1. This includes, but is not limited to, the measurement of a critical dimension
(height, length, width, radius, etc.), the weight a specific component, or the measurement of an
important voltage. The variable control charts supported by this software include X-Bar R (Mean and
Range), X-Bar Sigma, Median and Range, X-R (Individual Range), MA (Move Average), MAMR
(Moving Average / Moving Range), MAMS (Moving Average / Moving Sigma), EWMA
(Exponentially Weighted Moving Average) and CUSum charts.

139

X-Bar R Chart – Also known as the Mean (or Average) and Range Chart

The X-Bar R chart monitors the trend of a critical process variable over time using a statistical sampling
method that results in a subgroup of values at each sample interval. The X-Bar part of the chart plots the
mean of each sample subgroup and the Range part of the chart monitors the difference between the
minimum and maximum value in the subgroup.

X-Bar Sigma – Also known as the X-Bar S Chart

Very similar to the X-Bar R chart, the X-Bar Sigma chart replaces the Range plot with a Sigma plot
based on the standard deviation of the measured values within each subgroup. This is a more accurate
way of establishing control limits if the sample size of the subgroup is moderately large (> 10). Though
computationally more complicated, the use of a computer makes this a non-issue. The X-Bar Sigma
chart comes in fixed sample subgroup size, and variable sample subgroup size, versions.

Median Range – Also known as the Median and Range Chart

Very similar to the X-Bar R Chart, Median Range chart replaces the Mean plot with a Median plot
representing the median of the measured values within each subgroup. In order to use a Median Range
chart the process needs to be well behaved, where the variation in measured variables are (1) known to
be distributed normally, (2) are not very often disturbed by assignable causes, and (3) are easily
adjusted.

Individual Range Chart – Also known as the X-R Chart

The Individual Range Chart is used when the sample size for a subgroup is 1. This happens frequently
when the inspection and collection of data for quality control purposes is automated and 100% of the
units manufactured are analyzed. It also happens when the production rate is low and it is inconvenient
to have sample sizes other than 1. The X part of the control chart plots the actual sampled value (not a
mean or median) for each unit and the R part of the control chart plots a moving range that is calculated
using the current value of sampled value minus the previous value.

EWMA Chart – Exponentially Weighted Moving Average

The EWMA chart is an alternative to the preceding Shewhart type control charts (X-Bar R and I-R
charts in particular) and is most useful for detecting small shifts in the process mean. It uses a weighted
moving average of previous values to "smooth" the incoming data, minimizing the affect of random
noise on the process. It weights the current and most recent values more heavily than older values,
allowing the control line to react faster than a simple MA (Moving Average) plot to changes in the
process. Like the Shewhart charts, if the EWMA value exceeds the calculated control limits, the process
is considered out of control. While it is usually used where the process uses 100% inspection and the
sample subgroup size is 1 (same is the X-R chart), it can also be used when sample subgroup sizes are
greater than one.

MA Chart – Moving Average

140

The MA chart is another alternative to the preceding Shewhart type control charts (X-Bar R and I-R
charts in particular) and is most useful for detecting small shifts in the process mean. It uses a moving
average, where the previous (N-1) sample values of the process variable are averaged together along
with the current value to produce the current chart value. This helps to "smooth" the incoming data,
minimizing the affect of random noise on the process. Unlike the EWMA chart, the MA chart weights
the current and previous (N-1) values equally in the average. While the MA chart can often detect small
changes in the process mean faster than the Shewhart chart types, it is generally less effective than either
the EWMA chart, or the CuSum chart.

MAMR Chart – Moving Average/Moving Range

The MAMR chart combines our Moving Average chart with a Moving Range chart. The Moving
Average chart is primary (topmost) chart, and the Moving Range chart is the secondary (bottom) chart.
It uses a single sample/subgroup, same as our standard [Individual-Range], [Moving Average],
[EWMA], and [Moving Average] charts. When calculating the Moving Range, it windows the same data
values used in the Moving Average calculation. Note that the limits are variable (wider) at the
beginning, taking into account the fewer samples in the start up of any type of SPC chart which uses a
sliding window in the calculation of moving average and moving range statistics.

MAMS Chart – Moving Average / Moving Sigma

The MAMS chart combines our Moving Average chart with a Moving Sigma chart. The Moving
Average chart is primary (topmost) chart, and the Moving Sigma chart is the secondary (bottom) chart.
It uses a single sample/subgroup, same as our standard [Individual-Range], [Moving Average],
[EWMA], and [Moving Average] charts. When calculating the Moving Sigma, it windows the same data
values used in the Moving Average calculation. Note that the limits are variable (wider) at the
beginning, taking into account the fewer samples in the start up of any type of SPC chart which uses a
sliding window in the calculation of moving average and moving sigma statistics.

CuSum Chart – Tabular, one-sided, upper and lower cumulative sum

The CuSum chart is a specialized control chart, which like the EWMA and MA charts, is considered to
be more efficient that the Shewhart charts at detecting small shifts in the process mean, particularly if
the mean shift is less than 2 sigma. There are several types of CuSum charts, but the easiest to use and
the most accurate is considered the tabular CuSum chart and that is the one implemented in this
software. The tabular cusum works by accumulating deviations that are above the process mean in one
statistic (C+) and accumulating deviations below the process mean in a second statistic (C-). If either
statistic (C+ or C-) falls outside of the calculated limits, the process is considered out of control.

Time-Based and Batch-Based SPC Charts
The QCSPCChart software further categorizes Variable Control as either time- or batch- based. Time-
based SPC charts are used when data is collected using a subgroup interval corresponding to a specific
time interval. Batch-based SPC charts are used when the data subgroup interval is a sequential batch
number that does not correspond to a uniform time interval. The major difference in these two types of

141

SPC charts is the display of the x-axis. Variable control charts that sample using a uniform time interval
will generally use a time-based x-axis, with time/date axis labels. Variable control charts that sample
based on batches will generally use a numeric-based x-axis, with numeric axis labels.

Special Note on the use of Time-based verus Batch-based Variable Control Charts

If you are using a Time-based SPC Chart, then you MUST specify time stamps which are monotonic
and evenly spaced. Monotonic means that the values always increase. You can' t enter data from today,
followed by data from yesterday. That is going backward in time and is non-monotonic. The Time-based
control charts also require that the time stamps increase at a regular rate, i.e. 15 minutes. In time stamp
units (milliseconds), this would be an increase of (15 * 60 * 1000 = 900000) milliseconds per sample
interval. While this time stamp increment does not have to be exact, it should be close, or else the data
plotted in the SPC chart will not line up with the table. You can't enter data from an 8-hour run
yesterday, followed by an 8-hour run today. That would leave large gaps in the chart. If you have
irregular time stamp data, you must use the Batch-based SPC Chart type, which ignores the time stamp
when positioning data points in a chart. See the discussion of InitChartProperties in Chapter 5, SPC
Initial Chart Setup.

Most users do not have an even time interval between sample subgroups, which is a requirement for the
Time-based charts. The batch control charts can label the x-axis using one of three options: numeric
labeling (the original and default mode), time stamp labeling, and user defined string labeling. Because
of this change, we recommend that most users use the Batch-based SPC charts.

Time-Based Variable Control Chart

Note the time-based x-axis for both charts.

142

Batch-Based Variable Control Chart with numeric x-axis

Note the numeric based x-axis for both graphs

Batch-Based Variable Control Chart with time stamp x-axis

Note that even though the time stamp values do not have consistent time interval, the data points are
spaced evenly by batch number.

Creating a Variable Control Chart

The chart type, and whether or not is is time-based or batch-based, is defined in the SPCChart:
InitChartProperties block.

The InitChartProperties block has the following properties.

SPCChartType

143

The SPC chart type parameter. Use one of the string constants strings: MEAN_RANGE_CHART,
MEDIAN_RANGE_CHART, MEAN_SIGMA_CHART, MEAN_SIGMA_CHART_VSS,
INDIVIDUAL_RANGE_CHART, EWMA_CHART, MA_CHART, MAMR_CHART,
MAMS_CHART and TABCUSUM_CHART,

ChartMode

Specifies if the x-axis is time-based (Time), or batch-base (Batch). Use the string constant string Time
or Batch.

NumCategories

In an Attribute Control Charts this value represents the number of defect categories used to determine
defect counts. Specify a numeric value, no quotes. Since the example above is for a Variable Control
Chart (MEAN_RANGE_CHART), the NumCategories property does not need to be set.

NumSamplesPerSubgroup

Specifies the number of samples that make up a sample subgroup. If the SPCChartType is one of the
variable sample size chart types, this value must be the maximum number of samples per subgroup.
Specify a numeric value, no quotes.

NumDatapointsInView

Specifies the number of sample subgroups displayed in the graph at one time. Specify a numeric value,
no quotes.

TimeIncrementMinutes

Specifies the approximate time increment (in minutes) between adjacent subgroup samples. This applies
only to the Time ChartMode. Specify a numeric value, no quotes. Can be a double (0.5) to specify a
fraction of a minute.

There are also three parameters which are used exclusively the CuSum chart type. You do not need to
include them in any other chart.

CuSumKValue

A CuSum charts K value

CuSumHValue

A CuSum charts H value

CuSumMeanValue

A CuSum charts mean value

Example: Mean-Range (X-Bar R) with a Batch-based x-axis

144

"SPCChart": {
"InitChartProperties": {

 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12
 },

The example above uses 5 samples per subgroup, and has a chart width of 12 points at a time.

Example: Individual-Range (IR) with a Time-based x-axis

"SPCChart": {
"InitChartProperties": {

"SPCChartType": "INDIVIDUAL_RANGE_CHART",
"ChartMode": "Time",

 "NumSamplesPerSubgroup": 1,
 "NumDatapointsInView": 13,
 "TimeIncrementMinutes": 15

},

The example above uses 1 sample per subgroup, and has a chart width of 13 points at a time. Since it is
time-based control chart, you need to specify a TimeIncrementMinutes parameter, 15 in this case.

Note that the X-Bar Sigma chart, with a variable subgroup sample size, is initialized using
InitChartProperties with a SPCChartType value of MEAN_SIGMA_CHART_VSS.

"SPCChart": {
"InitChartProperties": {

 "SPCChartType": "MEAN_SIGMA_CHART_VSS",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 15,
 "NumDatapointsInView": 12
 },

Initialize the NumSamplesPerSubgroup with the maximum number of sample per subgroup you
expect for the subgroup data. X-Bar Sigma charts with sub groups that use a variable sample size must
be updated properly. See the section "Adding New Sample Records to a X-Bar Sigma Chart
(Variable Subgroup Sample Size)" in the "SPC Control Data and Alarm Classes" chapter.

The image below further clarifies how these parameters affect the variable control chart.

145

timeincrementminutes = 15

numsamplespersubgroup = 5

numdatapointsinview = 17

Adding New Sample Records for Variable Control Charts

In variable control charts, each data value in the samples array represents a specific sample in the sample
subgroup. In X-Bar R, X-Bar Sigma, and Median-Range charts, where the sample subgroup size is some
fraction of the total production level, there is one value in the samples array for each measurement
sample in the sample subgroup interval. If the production level is sixty items per hour, and the sample
size is five items per hour, then the graph would be updated once an hour with five items in the samples
array.

Below is an example of how to update a typical X-Bar R chart, setup for NumSamplesPerSubgroup = 5,
using the SampleData block. You will find many more examples in the Chapter 8, Adding Data to an
SPC Chart.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628,
 33.95771604022404,
 24.310097827061817,

146

 28.282642847792765,
 30.2908518818265
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214,
 34.38930645615096,
 28.0203674441636,
 33.27153359969366,
 36.8305571558275
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },

In an Individual-Range chart, and EWMA and MA charts that uses rational subgroup sizes of 1, the
samples array would only have one value for each update. If the production level is sixty items per hour,
with 100% sampling, the graph would be updated once a minute, with a single value in the samples
array.

"SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628

],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },

Updating MEAN_SIGMA_CHART_VSS with a variable number of samples per subgroup

The X-Bar Sigma chart also comes in a version where variable sample sizes are permitted, As in the
standard variable control charts, there is one value in the samples array for each measurement sample in
the sample subgroup interval. The difference is that the length of the samples array can change from
update to update.

147

X-Bar Sigma Chart with variable sample size

In this case, the control chart high and low limits vary from sample interval to sample interval,
depending on the number of samples in the associated sample subgroup. You can read the sample sizes
along the NO.INSP row in the data table above the chart. A low number of samples in the sample
subgroup make the band between the high and low limits wider than if a higher number of samples are
available. The X-Bar Sigma chart is the only variable control chart that can be used with a variable
sample size.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "BatchCount": 0,
 "TimeStamp": 1374768344076,
 "Note": "",
 "SampleValues": [
 27.908233086630105,
 31.940402816755082,
 27.55563653827735,
 30.083357069668647,
 33.642341315640614,
 28.72361222739654,
 32.099133969171135,
 26.356050567985285,
 29.31049201044222,
 28.499216431790145,
 31.04435971419966,
 33.2381471474555,

148

 31.589757172384306,
 32.438862725116614,
 31.53988206474448
]
 },
 {
 "BatchCount": 1,
 "TimeStamp": 1374769244076,
 "Note": "",
 "SampleValues": [
 28.749312830468913,
 26.404064179124912,
 33.28922196391206,

 31.694060174687134,
 26.90641611483808,
 31.48391922918815,
 30.209803672319776,
 29.86474359585655,
 32.53515676358969,
 29.12428709515284,
 29.75699541053711,
 31.017198158995903,
 30.224697293173516
]
 },
 {
 "BatchCount": 2,
 "TimeStamp": 1374770144076,
 "Note": "",
 "SampleValues": [
 26.801870534836045,
 27.378134477854075,
 33.08638714532048,
 31.769229875222915,
 32.0028978203766,
 27.226930046247567,
 28.687810832891774,
 33.60598037448174,
 29.262192232690143,
 32.27140254488991,
 32.70426215916774,
 32.02023454576835
]
 }

Measured Data and Calculated Value Tables

Standard worksheets used to gather and plot SPC data consist of three main parts.

The first part is the header section, identifying the title of the chart, the monitored process, the
machine operator, part number and other important information specific to the chart.

The second part is the measurement data recording and calculation section, organized as a table where
the sample data and calculated values are recorded in a neat, readable fashion.

149

The third part plots the calculated SPC values for the sample group variables as a SPC chart.

The chart includes options that enable the programmer to customize and automatically include header
information along with a table of the measurement and calculated data, in the SPC chart.

The following properties enable sections of the chart header and table:
:

TableSetup
 EnableInputStringsDisplay: boolean: true
 EnableSampleValues: boolean: true
 EnableCalculatedValues: boolean: true
 EnableProcessCapabilityValues: boolean: true
 EnableTotalSamplesValues: boolean: true
 EnableNotes: boolean: true
 EnableTimeValues: boolean: true

EnableInputStringsDisplay = true

EnableCategoryValues = true

EnableCalculatedValues = true

EnableTimeValues = true

EnableTotalSamplesValues = true

EnableNotes = true

In the program the code looks like the following code extracted from the chartDefExampleScripts.js
TimeXBarR example JSON script

 "SPCChart": {
 "InitChartProperties": {

150

 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },
 "Scrollbar": {
 "EnableScrollBar": true,
 "ScrollbarPosition": "SCROLLBAR_POSITION_MAX"
 },

 "TableSetup": {
 "HeaderStringsLevel": "HEADER_STRINGS_LEVEL2",
 "EnableInputStringsDisplay": true,
 "EnableCategoryValues": true,
 "EnableCalculatedValues": true,
 "EnableTotalSamplesValues": true,
 "EnableNotes": true,
 "EnableTimeValues": true,
 "EnableNotesToolTip": true,
 "TableBackgroundMode":"TABLE_NO_COLOR_BACKGROUND",
 "TableAlarmEmphasisMode":"ALARM_HIGHLIGHT_BAR",
 "ChartAlarmEmphasisMode":"ALARM_HIGHLIGHT_SYMBOL",
 "ChartData": {
 "Title": "Variable Control Chart (X-Bar R)",
 "PartNumber": "283501",
 "ChartNumber": "17",
 "PartName": "Transmission Casing Bolt",
 "Operation": "Threading",
 "SpecificationLimits": "27.0 to 35.0",
 "Operator": "J. Fenamore",
 "Machine": "#11",
 "Gauge": "#8645",
 "UnitOfMeasure": "0.0001 inch",
 "ZeroEquals": "zero",
 "DateString": "7/04/2013",
 "NotesMessage": "Control limits prepared May 10",
 "NotesHeader": "NOTES"
 }
 },

Process Capability Ratios and Process Performance Indices

The data table also displays any process capability statistics that you want to see. The software supports
the calculation and display of the Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppu, Ppl, and Ppk process capability
statistics.

In order to display process capability statistics you must first specify the process specification limits that
you want the calculations based on. These are not the high and low SPC control limits calculate by this
software; rather they externally calculated limits based on the acceptable tolerances allowed for the
process under measure. Set the lower specification limit (LSL) and upper specification limit (USL)
using the ChartData.ProcessCapabilitySetup.LSLValue and

151

ChartData.ProcessCapabilitySetup.USLValue properties of the chart. The code below is from the
chartDefExampleScripts.js TimeXBarR example JSON script.

"ProcessCapabilitySetup": {
"LSLValue": 27,
"USLValue": 35,
"EnableCPK": true,
"EnableCPM": true,
"EnablePPK": true

}

Enable the process capability items you want to include in the chart using one of the boolean properties
from the list below.

EnableCPK: boolean: false
EnableCPM: boolean: false
EnablePPK: boolean: false

 EnableCPL: boolean: false
 EnableCPU: boolean: false
 EnablePPL: boolean: false
 EnablePPU: boolean: false

The code below is from the chartDefExampleScripts.js TimeXBarR example JSON script.

"ChartData": {
 "Title": "Variable Control Chart (X-Bar R)",
 "PartNumber": "283501",

.

.

.
"ProcessCapabilitySetup": {

"LSLValue": 27,
"USLValue": 35,
"EnableCPK": true,
"EnableCPM": true,
"EnablePPK": true

}

 },

This selection will add three rows to the data table, one row each for the Cpk, Cpm and Ppk process
capability statistics. Once these steps are carried out, the calculation and display of the statistics is
automatic. If you don't want to see the process capability statistics in the display, set the
TableSetup.EnableProcessCapabilityValues property to false.

152

Formulas Used in Calculating the Process Capability Ratios

The formulas used in calculating the process capability statistics vary. We use the formulas found in the
textbook. "Introduction to Statistical Quality Control" by Douglas C. Montgomery, John Wiley and
Sons, Inc. 2001.

SPC Control Chart Nomenclature

USL = Upper Specification Limit

LSL = Lower Specification Limit

Tau = Midpoint between USL and LSL = ½ * (LSL + USL)

=
X = XDoubleBar - Mean of sample subgroup means (also called the grand average)
_
R = RBar – Mean of sample subgroup ranges

S = Sigma – sample standard deviation – all samples from all subgroups are used to calculate the
standard deviation S.
_
S = SigmaBar – Average of sample subgroup sigma’s. Each sample subgroup has a calculated standard
deviation and the SigmaBar value is the mean of those subgroup standard deviations.

153

d2 = a constant tabulated in every SPC textbook for various sample sizes.

By convention, the quantity RBar/d2 is used to estimate the process sigma for the Cp, Cpl and Cpu
calculations

MINIMUM – a function that returns the lesser of two arguments

SQRT – a function returning the square root of the argument.

Process Capability Ratios (Cp, Cpl, Cpu, Cpk and Cpm)

Cp = (USL – LSL) / (6 * RBar/d2)

Cpl = (XDoubleBar – LSL) / (3 * RBar/d2)

Cpu = (USL - XDoubleBar) / (3 * RBar/d2)

Cpk = MINIMUM (Cpl, Cpu)

Cpm = Cp / (SQRT(1 + V2)

where

V = (XDoubleBar – Tau) / S

Process Performance Indices (Pp, Ppl, Ppu, Ppk)

Pp = (USL – LSL) / (6 * S)

Ppl = (XDoubleBar – LSL) / (3 * S)

Ppu = (USL - XDoubleBar) / (3 *S)

154

Ppk = MINIMUM (Ppl, Ppu)

The major difference between the Process Capability Ratios (Cp, Cpl, Cpu, Cpk) and the Process
Performance Indices (Pp, Ppl, Ppu, Ppk) is the estimate used for the process sigma. The Process
Capability Ratios use the estimate (RBar/d2) and the Process Performance Indices uses the sample
standard deviation S. If the process is in control, then Cp vs Pp and Cpk vs Ppk should returns
approximately the same values, since both (RBar/d2) and the sample sigma S will be good estimates of
the overall process sigma. If the process is NOT in control, then ANSI (American National Standards
Institute) recommends that the Process Performance Indices (Pp, Ppl, Ppu, Ppk) be used.

Table Strings

The input header strings display has four sub-levels that display increasing levels of information. The
input header strings display level is set using the charts HeaderStringsLevel property. Strings that can be
displayed are: Title, PartNumber, ChartNumber, DateString, PartName, Operation, Machine,
SpecificationLimits, Gauge, UnitOfMeasure, ZeroEquals and DateString. The four levels and the
information displayed is listed below:

HEADER_STRINGS_LEVEL0 Display no header information
HEADER_STRINGS_LEVEL1 Display minimal header information: Title, PartNumber,

ChartNumber, DateString
HEADER_STRINGS_LEVEL2 Display most header strings: Title, PartNumber, ChartNumber,

PartName, Operation, Operator, Machine, DateString
HEADER_STRINGS_LEVEL3 Display all header strings: Title, PartNumber, ChartNumber,

DateString, PartName, Operation, Machine, SpecificationLimits,
Gauge, UnitOfMeasure, ZeroEquals and DateString

The example JSON script chartDefExampleScripts.js TimeXBarR demonstrates the use of the
HeaderStringsLevel property. The example below displays a minimum set of header strings
(HeaderStringsLevel = HEADER_STRINGS_LEVEL1).

 "TableSetup": {
 "HeaderStringsLevel": "HEADER_STRINGS_LEVEL1",
 "EnableInputStringsDisplay": true,
 "ChartData": {
 "Title": "Variable Control Chart (X-Bar R)",
 "PartNumber": "283501",
 "ChartNumber": "17",

The example below displays a maximum set of header strings (HeaderStringsLevel =
HEADER_STRINGS_LEVEL3).

155

 "TableSetup": {
 "HeaderStringsLevel": "HEADER_STRINGS_LEVEL1",
 "EnableInputStringsDisplay": true,
 "ChartData": {
 "Title": "Variable Control Chart (X-Bar R)",
 "PartNumber": "283501",
 "ChartNumber": "17",
 "PartName": "Transmission Casing Bolt",
 "Operation": "Threading",
 "SpecificationLimits": "27.0 to 35.0",
 "Operator": "J. Fenamore",
 "Machine": "#11",
 "Gauge": "#8645",
 "UnitOfMeasure": "0.0001 inch",
 "ZeroEquals": "zero",

The identifying string displayed in front of the input header string can be any string that you want,
including non-English language strings. For example, if you want the input header string for the Title to
represent a project name:

Project Name: Project XKYZ for PerQuet

Set the properties:

"StaticProperties": {
"SPCChartStrings": {

"TitleHeader": "Project Name:",
"DefaultMean": "Average",
"TimeValueRowHeader": "Time"

}
}

Change other header strings using the ChartData properties listed below.

• TitleHeader
• PartNumberHeader
• ChartNumberHeader
• PartNameHeader
• OperationHeader
• OperatorHeader
• MachineHeader
• DateHeader
• SpecificationLimitsHeader
• GaugeHeader

156

• UnitOfMeasureHeader
• ZeroEqualsHeader
• NotesHeader

Even though the input header string properties have names like Title, PartNumber, ChartNumber, etc.,
those names are arbitrary. They are really just placeholders for the strings that are placed at the
respective position in the table. You can display any combination of strings that you want, rather than
the ones we have selected by default, based on commonly used standardized SPC Control Charts.

Special Note

Rather than change the header string using

Table Background Colors

The ChartTable property of the chart has some properties that can further customize the chart. The
default table background uses the accounting style green-bar striped background. You can change this
using the ChartTable.TableBackgroundMode property. Set the value to one of the
TableBackgroundMode constants.

TABLE_NO_COLOR_BACKGROUND Constant specifies that the table does not use a
background color.

TABLE_SINGLE_COLOR_BACKGROUND Constant specifies that the table uses a single color for
the background (BackgroundColor1)

TABLE_STRIPED_COLOR_BACKGROUND Constant specifies that the table uses horizontal stripes
of color for the background (BackgroundColor1 and
BackgroundColor2)

TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL
Constant specifies that the table uses a grid background,
with BackgroundColor1 the overall background color
and BackgroundColor2 the color of the grid lines.

Extracted from the chartDefExampleScripts.js TimeIR example JSON script

"TableSetup": {
.
.
.

 "TableBackgroundMode": "TABLE_STRIPED_COLOR_BACKGROUND",
 "BackgroundColor1": "BEIGE",
 "BackgroundColor2": "LIGHTGOLDENRODYELLOW",

157

Extracted from the chartDefExampleScripts.js BatchMedianRange example JSON script

"TableSetup": {
.
.
.

 "TableBackgroundMode": "TABLE_SINGLE_COLOR_BACKGROUND",
 "BackgroundColor1": "LIGHTGRAY",

Extracted from the chartDefExampleScripts.js TimeXBarSigma JSON script.

"TableSetup": {
.
.
.

 "TableBackgroundMode": "TABLE_NO_COLOR_BACKGROUND",

"TableSetup": {
.
.
.

158

 "TableBackgroundMode": "TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL",
 "BackgroundColor1": "WHITE",
 "BackgroundColor2": "GRAY",

Table and Chart Fonts

The StaticProperties block has static property which is used to set the default table font. Use this if you
want to override the default font-family used for both tables and charts, established using the
DefaultFontName property. Setting the static properties needs to be done first thing in the first JSON
chart definition file you process.

Extracted from the chartDefExampleScripts.js BatchIR example JSON script.

"StaticProperties":
{

"DefaultFontName": "Arial, sans-serif",
"DefaultTableFont":
{ "Name": "'Comic Sans MS', cursive, sans-serif",

"Size": 12,
"Style": "Plain"

},
},

In the example above, the default font is set to Arial. Normally this would apply to both charts and
tables. However, the default table font is over-ridden to Comic Sans MS. So now the charts are in Arial,
and the table are is in Comic Sans MS.

Chart Fonts
The default font family is set using the static DefaultFontName property used in the example above. The
font sizes though vary from chart object to object in a chart. It is possible to set the font for a class of
objects using the StaticProperties block. object by object bases. They establish the default fonts for the
chart objects of a given type.

AxisLabelFont The font used to label the x- and y- axes.
AxisTitleFont The font used for the axes titles.
MainTitleFont The font used for the chart title.
SubheadFont The font used for the chart subhead.
ToolTipFont The tool tip font.
AnnotationFont The annotation font.
ControlLimitLabelFont The font used to label the control limits

StaticProperties
DefaultChartFonts

 AxisLabelFont
Name: String: "sans-serif"

159

 Size: double: 12
 Style: String: "BOLD"

AxisTitleFont: standard Name, Size:12, Style: BOLD font properties
 MainTitleFont: standard Name, Size:18, Style: BOLD font properties
 SubHeadFont: standard Name, Size:14, Style: BOLD font properties
 ToolTipFont: standard Name, Size:12, Style: PLAIN font properties
 AnnotationFont: standard Name, Size:12, Style: PLAIN font properties
 ControlLimitLabelFont: standard Name, Size:12, Style: PLAIN font properties

The chart class has a static property, DefaultTableFont, that sets the default font string. Since the
chart fonts all default to different sizes, the default font is defined using a string specifying the name of
the font. This static property must be set BEFORE the charts InitChartProperties routine.

StaticProperties: {
 "DefaultChartFonts": {
 "AxisLabelFont": {
 "Name": "sans-serif",
 "Size": 16,
 "Style": "PLAIN"
 },
 "AxisTitleFont": {
 "Name": "sans-serif",
 "Size": 16,
 "Style": "BOLD"
 }

}
 }

Setting Decimal Precision in the Table

Properties under the ChartData block of the TableSetup block will set the decimal precision of the
sample values, the calculated values and the process capability values of the table.

"SPCChart": {
"TableSetup": {
 "HeaderStringsLevel": "HEADER_STRINGS_LEVEL2",

.
.
.

 "ChartData": {
 "Title": "Variable Control Chart (X-Bar R)",

.

.

.
 "CalculatedItemDecimals": 3,

 "ProcessCapabilityDecimals": 1,
 "SampleItemDecimals": 0

}
}

160

SPC Charts without a Table

If you don’t want any of the items we have designated table itmes, use the UseNoTable block. It
removes all of the table items, and displays the primary and/or secondary charts with a simple title and
optional histograms.

This initialization method initializes the most important values in the creation of a SPC chart.

UseNoTable
 PrimaryChart: boolean: true
 SecondaryChart: boolean: true
 Histograms: boolean: true
 Title: String: ""

PrimaryChart

Set to true to display the primary chart.

SecondaryChart

Set to true to display the secondary chart.

Histograms

Set to true to display the histograms to the left of each chart.

Title

Specify a string title to display above the graphs.

Important Note: When using UseNoTable, do NOT use a TableSetup block in your JSON script.

Example

 "UseNoTable": {
 "PrimaryChart": true,
 "SecondaryChart": true,
 "Histograms": true,
 "Title": "Place your chart title here"
 },

161

Chart Position

If the SPC chart does not include frequency histograms on the left (they take up about 20% of the
available chart width), you may want to adjust the left and right edges of the chart using the
GraphStartPosX and GraphStopPlotX properties to allow for more room in the display of the data.
This also affects the table layout, because the table columns must line up with the chart data points.

"ChartPositioning": {
"GraphStartPosX": 0.1,
"GraphStopPosX": 0.875

},

There is not much flexibility positioning the top and bottom of the chart. Depending on the table items
enabled, the table starts at the position defined the TableStartPosY property, and continues until all of
the table items are displayed. It then offsets the top of the primary chart with respect to the bottom of the
table by the value of the property GraphTopTableOffset. The top of the secondary chart offsets from
the bottom of the primary chart by the amount of the property InterGraphMargin. The value of the
property GraphBottomPos defines the bottom of the graph. The default values for these properties are:

162

"ChartPositioning": {
"GraphStartPosX": 0.15,
"GraphStopPosX": 0.8,
"TableStartPosY": 0.0,
"GraphTopTableOffset": 0.02,
"InterGraphMargin": 0.075,
"GraphBottomPos": 0.90,
"BottomLabelMargin": 0.0

}

The picture below uses different values for these properties in order to emphasize the affect that these
properties have on the resulting chart.

GraphTopTableOffset = 0.1

TableStartPosY = 0.1

InterGraphMargin = 0.1

GraphBottomPos = 0.9

GraphStopPosX = 0.875GraphStartPosX = 0.15

SPC Control Limits

There are several ways to set the SPC control limit for a chart. The first explicitly sets the limits to
values that you calculate on your own, because of some analysis that a quality engineer does on
previously collected data. Another d auto-calculates the limits using the algorithms supplied in this
software. If you want to set the Target, LCL3 (-3-sigma limit) and UCL3 (3-sigma limit), to explicit

163

values, you can do in the Target, LCL3 and UCL3 blocks of the PrimaryChartSetup | ControlLimits
block. Assign the Value property to the limit value you want.

"ControlLimits": {
 "Target": {
 "DisplayString": "TargetXX",
 "EnableAlarmLine": true,
 "EnableAlarmChecking": true,
 "LimitValue": 30,
 "EnableAlarmLineText": true
 },
 "LCL3": {
 "DisplayString": "LCLXX",
 "EnableAlarmLine": true,
 "EnableAlarmChecking": true,
 "LimitValue": 25,
 "EnableAlarmLineText": false
 },
 "UCL3": {
 "DisplayString": "UCLXX",
 "EnableAlarmLine": false,
 "EnableAlarmChecking": true,
 "LimitValue": 35,
 "EnableAlarmLineText": true
 }
 }

If you have more than the standard +- Sigma control limits, it is better if you use the
SpecifyControlLimitsUsingMeanAndSigma block to set all the limits.

SpecifyControlLimitsUsingMeanAndSigma
Mean: double: 1
Sigma: double: 1

In the example above, where the Target was 30, the LCL3 value 25, and the UCL value 25, the mean an
sigma values would be: Mean = Target = 30 and Sigma = (ULC3 – Mean) / 3 = 1.6666.

"SpecifyControlLimitsUsingMeanAndSigma": {
"Mean": 30,
"Sigma": 1.666

}

There is another property block (Add3SigmaControlLimits) which will generate multiple control
limits, for +-1, 2, and 3- sigma levels, based on an initial specification of the target value, and the +-3
sigma control limits. This is most useful if you want to generate +-1, 2 and 3-sigma control limits in
order to fill in between them with a zone fill color. See the MultiLimitXBarRChart example. If you call
the AutoCalculateControlLimits method, the initial +-1,2 and 3-sigma control limit values will be
altered to the new, calculated values, but the control limit lines remain, with their new values. Since you
do not normally want to be generating alarm messages for excursions into the +-1 and 2-sigma limit

164

areas, the Add3SigmaControl limits has the option of disabling alarm notification in the case of +-1
and +-2 alarm conditions.

"123SigmaControlLimits": {
"Target": 30,
"LCL3Value": 25,
"UCL3Value": 30,
"AlarmTest12": true ,

 "EnableAlarmLine": true,
 "EnableAlarmChecking": false,
 "EnableAlarmLineText": true

}

Control Limit Fill Option used with +-1, 2 and 3-sigma control limits

The second way to set the control limits is to use the AutoCalculateControlLimits method. You must
have already added a collection of sampled data values to the charts ChartData SPC data object before
you can call this method, since the method uses the internal ChartData object to provide the historical
values needed in the calculation.

AutoCalculateControlLimits takes a boolean array parameter: one for the Primary Chart and one for
the Secondary Chart. If you leave out the array parameter, it is the same as the values [true, true]

 "Methods": {
 "AutoCalculateControlLimits": [true,true],
 "AutoScaleYAxes": [true,true],
 "RebuildUsingCurrentData": true
 }

165

Almost always, a call to AutoCalculateControlLimits will be followed by a call to AutoScaleYAxes to
rescale the chart to take into account the new control limits, and RebuildUsingCurrentData to rebuild the
graph to show the new limits.

You can add data to the ChartData object, auto-calculate the control limits to establish the SPC control
limits, and continue to add new data values. Alternatively, you can set the SPC control limits explicitly,
as the result of previous runs, using the Target, LCL3, UCL3, 123SigmaControlLimits, or
SpecifyControlLimitsUsingMeanAndSigma properties.

Need to exclude records from the control limit calculation? Mark which ones to exclude using the
SampleData | ExcludeRecords properties.

"ExcludeRecords": [2, 7, 17, 31]

Variable SPC Control Limits

There can be situations where SPC control limits change in a chart.

There are four ways to enter new SPC limit values. First, you can use the
PrimaryChartSetup.ControlLimits.SetLimits array property.

"PrimaryChartSetup": {
 "ControlLimits": {

"SetLimits": [28, 23, 33]
}

}

 and the SecondaryChartSetup.ControlLimits.SetLimits array property.

"SecondaryChartSetup": {
 "ControlLimits": {

166

"SetLimits": [9, 0, 18]
}

}

This method only works if you are working with the default +-3 Sigma control limits (+ targets) for the
Primary and Secondary charts.

Second, you can use the Methods.AutoCalculateControlLimits method. You must have already added
a collection of sampled data values to the chart before you can call this method, since the method needs
historical values needed in the calculation.

 "Methods": {
 "AutoCalculateControlLimits": [true,true]

 }

This method works to set the control limits for all sigma-based limits..

Third, you can use the PrimaryChartSetup.SpecifyControlLimitsUsingMeanAndSigma property and
just set the mean and sigma of the process.

"PrimaryChartSetup": {
"SpecifyControlLimitsUsingMeanAndSigma": {

"Mean": 28,
"Sigma": 5

 }
}

Also, the SecondaryChartSetup.SpecifyControlLimitsUsingMeanAndSigma property.

"SecondaryChartSetup": {
"SpecifyControlLimitsUsingMeanAndSigma": {

"Mean": 5,
"Sigma": 2

 }
}

For the SecondaryChartSetup, you must call it with the mean (centerline value) and sigma of that chart,
not the primary chart. They are different.

This method works to set the control limits for all sigma-based limits..

Last, you can enter the SPC control limits with every new sample subgroup record, using
SampleData.SampleIntervalRecords.VariableControlLimits array parameter.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [

167

 27.53131515148628,
 33.95771604022404,
 24.310097827061817,
 28.282642847792765,
 30.2908518818265
],

 "VariableControlLimits": [28, 23, 33, 9, 0, 18],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },

The order of the values in the VariableControlLimits array is [Primary target, Primary LCL3, Primary
UCL3, Secondary target, Secondary LCL3, Secondary UCL3]. Other limits are ignored.
This method only works if you are working with the default +-3 Sigma control limits (+ targets) for the
Primary and Secondary charts.

Multiple SPC Control Limits

The normal SPC control limit displays at the 3-sigma level, both high and low. A common standard is
that if the process variable under observation falls outside of the +-3-sigma limits the process is out of
control. The default setup of our variable control charts have a high limit at the +3-sigma level, a low
limit at the -3-sigma level, and a target value. There are situations where the quality engineer also wants
to display control limits at the 1-sigma and 2-sigma level. The operator might receive some sort of
preliminary warning if the process variable exceeds a 2-sigma limit.

You are able to add additional control limit lines to a variable control chart, as in the example JSON
script chartDefExampleScripts.js TimeMultiLimitXBarR.

168

We also added a method (123SigmaControlLimits) which will generate multiple control limits, for +-1,
2, and 3- sigma levels, based on an initial specification of the target value, and the +-3 sigma control
limits. This is most useful if you want to generate +-1, 2 and 3-sigma control limits in order to fill in
between them with a zone fill color. See the chartDefExampleScripts.js TimeMultiLimitXBarRChart
JSON script. If you call the AutoCalculateControlLimits method, the initial +-1,2 and 3-sigma control
limit values will be altered to the new, calculated values, but the control limit lines remain, with their
new values. Since you do not normally want to be generating alarm messages for excursions into the +-1
and 2-sigma limit areas, the 123SigmaControlLimits limits has the option of disabling alarm
notification, using AlarmTest12: false, in the case of +-1 and +-2 alarm conditions.

 "PrimaryChartSetup": {
 "ControlLimits": {
 "123SigmaControlLimits": {
 "Target": 32,
 "LCL3Value": 28,
 "UCL3Value": 36,
 "AlarmTest12": false
 },

"ZoneFill": true,
"ZoneColors": [

 "ORANGE",

169

 "YELLOW",
 "BEIGE"
]

 }
 },
 "SecondaryChartSetup": {
 "ControlLimits": {
 "123SigmaControlLimits": {
 "Target": 2,
 "LCL3Value": 0,
 "UCL3Value": 5,
 "AlarmTest12": false

 },
"ZoneFill": true,
"ZoneColors": [

 "ORANGE",
 "YELLOW",
 "BEIGE"
]

 }
 },

Control Limit Fill Option used with +-1, 2 and 3-sigma control limits

170

You can also add additional control limits one at a time. By default you get the +-3-sigma control limits.
So additional control limits should be considered +-2-sigma and +-1-sigma control limits. Do not
confuse control limits with specification limits, which must be added using the SpecificationLimits
block. It is critical that you add them in a specific order, that order being:

 Primary Chart SPC_LOWER_CONTROL_LIMIT_2 (2-sigma lower limit)
 Primary Chart SPC_UPPER_CONTROL_LIMIT_2 (2-sigma upper limit)
 Primary Chart SPC_LOWER_CONTROL_LIMIT_1 (1-sigma lower limit)
 Primary Chart SPC_UPPER_CONTROL_LIMIT_1 (1-sigma upper limit)

 Secondary Chart SPC_LOWER_CONTROL_LIMIT_2 (2-sigma upper limit)
 Secondary Chart SPC_UPPER_CONTROL_LIMIT_2 (2-sigma upper limit)
 Secondary Chart SPC_LOWER_CONTROL_LIMIT_1 (1-sigma upper limit)
 Secondary Chart SPC_UPPER_CONTROL_LIMIT_1 (1-sigma upper limit)

"AddControlRules": [
 {
 "RuleSet": "BASIC_RULES",
 "RuleNumber": 3

 },
 {
 "RuleSet": "BASIC_RULES",
 "RuleNumber": 4
 },
 {
 "RuleSet": "BASIC_RULES",
 "RuleNumber": 5
 },
 {
 "RuleSet": "BASIC_RULES",
 "RuleNumber": 6
 }

]

Special Note – You can specify a specific value using the LimitValue propety. If you do not call the
charts AutoCalculateControlLimits method, the control limit will be displayed at that value. If you do
call AutoCalculateControlLimits method, the auto-calculated value overrides the initial value (0.0 in
the examples above). The software know what sigma level is assigned to a given control rule, and that
is used by the AutoCalculateControlLimits to calculate the control limit level.

If you want the control limits displayed as filled areas, set the charts ZoneFill flag under ControlLimits.

 "PrimaryChartSetup": {
 "ControlLimits": {

"ZoneFill": false,
"ZoneColors": [

171

 "ORANGE",
 "YELLOW",
 "BEIGE"
]

}
}

This will fill each control limit line from the limit line to the target value of the chart. In order for the fill
to work properly, you must set this property after you define all additional control limits. In order for the
algorithm to work, you must add the outer most control limits (SPC_UPPER_CONTROL_LIMIT_3
and SPC_LOWER_CONTROL_LIMIT_3) first, followed by the next outer most limits
(SPC_UPPER_CONTROL_LIMIT_2 and SPC_LOWER_CONTROL_LIMIT_2), followed by the
inner most control limits (SPC_UPPER_CONTROL_LIMIT_1 and
SPC_LOWER_CONTROL_LIMIT_1). This way the fill of the inner limits will partially cover the fill of
the outer limits, creating the familiar striped look you want to see.

If you are using any of the names rule sets (WECO, NELSON, ects.), call it in the ControlLimits block.

See the example program WERulesVariableControlCharts.XBarSigmaChart.

 "ControlLimits":
 {

 "ZoneFill": true,
 "NamedRuleSet":

 {
 "RuleSet": "WECO_RULES",
 "RuleEnable": [true, true, true, true, true, true, true, true]
 }

 }

172

Named Rule Sets

The normal SPC control limit rules display at the 3-sigma level, both high and low. In this case, a simple
threshold test determines if a process is in, or out of control. Other, more complex tests rely on more
complicated decision-making criteria. These are described in detail in Chapter 13. The most popular of
these are the Western Electric Rules, also know as the WE Rules, or WE Runtime Rules. These rules
utilize historical data for the eight most recent sample intervals and look for a non-random pattern that
can signify that the process is out of control, before reaching the normal +-3 sigma limits.

A processed is considered out of control if any of the following criteria are met:

1. The most recent point plots outside one of the 3-sigma control limits. If a point lies outside either
of these limits, there is only a 0.3% chance that this was caused by the normal process.

2. Two of the three most recent points plot outside and on the same side as one of the 2-sigma
control limits. The probability that any point will fall outside the warning limit is only 5%. The
chances that two out of three points in a row fall outside the warning limit is only about 1%.

3. Four of the five most recent points plot outside and on the same side as one of the 1-sigma
control limits. In normal processing, 68% of points fall within one sigma of the mean, and 32% fall
outside it. The probability that 4 of 5 points fall outside of one sigma is only about 3%.

4. Eight out of the last eight points plot on the same side of the center line, or target value.
Sometimes you see this as 9 out of 9, or 7 out of 7. There is an equal chance that any given point will
fall above or below the mean. The chances that a point falls on the same side of the mean as the one
before it is one in two. The odds that the next point will also fall on the same side of the mean is one in
four. The probability of getting eight points on the same side of the mean is only around 1%.

These rules apply to both sides of the center line at a time. Therefore, there are eight actual alarm
conditions: four for the above center line sigma levels and four for the below center line sigma levels.

There are also additional WE Rules for trending. These are often referred to as WE Supplemental Rules.
Don't rely on the rule number, often these are listed in a different order.

5. Six points in a row increasing or decreasing. The same logic is used here as for rule 4 above.
Sometimes this rule is changed to seven points rising or falling.

6. Fifteen points in a row within one sigma. In normal operation, 68% of points will fall within
one sigma of the mean. The probability that 15 points in a row will do so, is less than 1%.

7. Fourteen points in a row alternating direction. The chances that the second point is always
higher than (or always lower than) the preceding point, for all seven pairs is only about 1%.

8. Eight points in a row outside one sigma. Since 68% of points lie within one sigma of the mean, the
probability that eight points in a row fall outside of the one-sigma line is less than 1%.

173

While the techniques in the previous section can be used to draw multiple SPC control limit lines on the
graph, at the +-1, 2, 3 sigma levels for example, they do not provide for the (x out of y) control criteria
used in evaluating the WE rules. The software can be explicitly flagged to evaluate out of control alarm
conditions according to the WE Rules, instead of the default +-3 sigma control criteria. It will create
alarm lines at the +-1, 2, and 3-sigma control limits and the center line. It will also automatically
establish the eight alarm conditions associated with the WE rules. Set the RuleSet property to
WECO_RULES, using the PrimaryChartSetup NamedRuleSet block. When the variable control charts
AutoCalculatedControlLimits method is called, the software automatically calculates all of the
appropriated control limits, based on the current data.

If you want to include the WECO Trending (Supplemental) rules, in addition to the regular WECO
Runtime rules, set the RuleSet property to WECOANDSUPP_RULES instead of WECO_RULES.

 "ControlLimits":
 {
 "ZoneFill": true,

 "NamedRuleSet":
 {
 "RuleSet": "WECOANDSUPP_RULES",
 "RuleEnable": [true, true, true, true, true]
 }
}

If you have enable alarm event processing, the software will call your Javascript alarm processing
method, where you can take appropriate action. If a time interval has multiple alarms, i.e. more than one
of the four WR Runtime rules are broken, only the one with the lowest WE rule number is vectored to
the alarm event processing routine. See Chapter 14 – Event Handling for Alarms and Tooltips for details
about alarm event handling.

If you want multiple alarms for a time interval vectored to the alarm processing routine (i.e. it is possible
that a time period has WE1, WE2, WE3 and WE4 alarms), set the
MiscChartDataProperties.AlarmReportMode property to REPORT_ALL_ALARMS.

"MiscChartDataProperties": {
"AlarmReportMode": "REPORT_ALL_ALARMS"

}

The resulting X-Bar R SPC Chart with WE Runtime Rules looks something like this.. In this example,
the WR Rules violations are processed by the SPCControlLimitAlarm method, where the alarm
condition is added to the Notes record for the appropriate sample interval. The Y in the Notes line
indicates that an alarm record has been saved for that time interval, and you can click on the Y to see the
note describing the alarm condition.

174

Specification Limits

Specification limits are not to be confused with the SPC Control Limits discussed in the previous
sections. Specification limits are imposed externally and are not calculated based on the manufacturing
process under control. They represent the maximum deviation allowable for the process variable being
measured. They are calculated based on input from customers and/or engineering. Usually specification
limits are going to be wider than the SPC 3-sigma limits, because you want the SPC control limits to trip
before you get to the specification limits. The SPC control limits give you advance notice that the
process is going south before you start rejecting parts based on specification limits. You can display
specification limits in the same chart as SPC control limits. Use the SpecificationLimits block of the
PrimaryChartSetup or SecondaryChartSetup block.

"SpecificationLimits":
 {

 "LowSpecificationLimit":
 {

 "LimitValue": 15
 },

 "HighSpecificationLimit":
 {

 "LimitValue": 40
 }
 }

175

Chart Y-Scale

You can set the minimum and maximum values of the two charts y-scales manually using the YAxisLeft
bloc of properties.

"YAxisLeft":
{

"MinValue": 10,
"MaxValue": 45

}

It is easiest to just call the auto-scale routines after the chart has been initialized with data, and any
control limits calculated.

 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true
 }

Once all of the graph parameters are set, call the method RebuildUsingCurrentData.

If, at any future time you change any of the chart properties, you will need to process
Methods.RebuildUsingCurrentData to force a rebuild of the chart, taking into account the current
properties. RebuildUsingCurrentData also invalidates the chart and forces a redraw.

Updating Chart Data

The real-time example above demonstrates how the SPC chart data is updated, using the
SampleData.SampleIntervalRecords array property.

 "SPCChart": {

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628,
 33.95771604022404,
 24.310097827061817,
 28.282642847792765,
 30.2908518818265

176

],
 "BatchCount": 50,
 "TimeStamp": 1371830829074,
 "BatchIDString": "IDS50",
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214,
 34.38930645615096,
 28.0203674441636,
 33.27153359969366,
 36.8305571558275
],
 "BatchCount": 51,
 "TimeStamp": 1371831729074,
 "BatchIDString": "IDS51",
 "Note": ""
 },
 {
 "SampleValues": [
 35.21321620109259,
 32.93940741018088,
 33.66485557976163,
 34.17314124609133,
 24.576683179863725
],
 "BatchCount": 52,
 "TimeStamp": 1371832629074,
 "BatchIDString": "IDS52",
 "Note": ""
 },
 {
 "SampleValues": [
 27.898302097237174,
 25.906531082892915,
 26.950768095191137,
 30.812058501916457,
 31.085075984847936
],
 "BatchCount": 53,
 "TimeStamp": 1371833529074,
 "BatchIDString": "IDS53",
 "Note": ""
 }

]
 },
 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true
 }
 }
}

177

In this example the sample data and the time stamp for each sample record is simulated. In your
application, you will probably be reading the sample record values from some sort of database or file,
along with the actual time stamp for that data. Make sure you start the BatchCount from where you left
off. Don't start at 0 again. If you are using a Time-based control chart, make sure the time value of the
TimeStamp starts where the old time stamp stopped.

Note: Since there is no reliable standard across browsers for time/date data, this value is expressed as
the Unix standard of elapsed milliseconds since Thursday, 1 January 1970. The TimeStamp value is
used in both time-based SPC Charts, and batch-based SPC Charts, so you must be able to convert from
time, to the millisecond equivalent value in order to input the time stamp.

If you want to include a text note in the sample record, just fillout the appropriate Note property of the
appropriate SampleIntervalRecords item.

 "SPCChart": {

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628,
 33.95771604022404,
 24.310097827061817,
 28.282642847792765,
 30.2908518818265
],
 "BatchCount": 50,
 "TimeStamp": 1371830829074,
 "BatchIDString": "IDS50",
 "Note": "Important Note #14"
 },
 {
 "SampleValues": [
 27.444285005240214,
 34.38930645615096,
 28.0203674441636,
 33.27153359969366,
 36.8305571558275
],
 "BatchCount": 51,
 "TimeStamp": 1371831729074,
 "BatchIDString": "IDS51",
 "Note": ""
 },
 {
 "SampleValues": [
 35.21321620109259,
 32.93940741018088,
 33.66485557976163,
 34.17314124609133,
 24.576683179863725
],
 "BatchCount": 52,

178

 "TimeStamp": 1371832629074,
 "BatchIDString": "IDS52",
 "Note": "Importan Note #15"
 },
 {
 "SampleValues": [
 27.898302097237174,
 25.906531082892915,
 26.950768095191137,
 30.812058501916457,
 31.085075984847936
],
 "BatchCount": 53,
 "TimeStamp": 1371833529074,
 "BatchIDString": "IDS53",
 "Note": ""
 }

]
 },
 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true
 }
 }
}

There are situations where you might want to add, change, modify, or append a note for a sample
subgroup after the sample record has already been added. This can happen if the adding a new sample
subgroup triggers an alarm method call generates an alarm event. In the alarm event processing
routine, you can add code that adds a special note to the sample subgroup that generated the alarm. Use
the AddNote block to add notes to the current record, independent of the SampleData block.

"MiscChartDataProperties": {
"AddNote": [

{
 "Index": 10,
 "Note": "Important Note #1",
 "Append": true
} ,

 {
 "Index": 17,
 "Note": "Important Note #2",
 "Append": true
}

]
 }

179

Scatter Plots of the Actual Sampled Data

If you want the actual sample data plotted along with the mean or median of the sample data, set the
PrimaryChartSetup.PlotMeasurementValues property to true.

 "PrimaryChartSetup": {
 "PlotMeasurementValues": true
 },

Enable the Chart ScrollBar

Set the Scrollbar.EnableScrollBar property true to enable the chart scrollbar. You will then be able to
window in on 8-20 sample subgroups at a time, from a much larger collection of measurement data
representing hundreds or even thousands of subgroups, and use the scrollbar to move through the data,
similar to paging through a spreadsheet.

"Scrollbar": {
 "EnableScrollBar": true,
 "ScrollbarPosition": "SCROLLBAR_POSITION_MAX"
},

You can also set the initial value of the scroll bar so some know value, using the ScrollbarValue
property, or you can force the go to the maximum value of the scroll bar after any data updates. That
way the most recent data will always be in view. Or, you can specify that after a
RebuildUsingCurrentData, which usually increases the scroll bars range of values, that the scrollbar
position to show the must recently added data ("SCROLLBAR_POSITION_MAX"), or the oldest data
("SCROLLBAR_POSITION_MIN").

SPC Chart Histograms

Viewing frequency histograms of both the variation in the primary variable (Mean, Median, count, or
actual value), and the secondary variable (Range, Sigma or Moving Range) side-by-side with the SPC

180

control chart makes it even easier to find out whether the variations are the result of natural variations or
the result of some systemic change in the process. You can turn on integrated frequency histograms for
either chart using the
PrimaryChartSetup.FrequencyHistogram.EnableDisplayFrequencyHistogram and
SecondaryChartSetup.FrequencyHistogram.EnableDisplayFrequencyHistogram properties of the
chart.

 "PrimaryChartSetup": {
 "FrequencyHistogram": {
 "EnableDisplayFrequencyHistogram": true
 }
 },

 "SecondaryChartSetup": {
"FrequencyHistogram": {

 "EnableDisplayFrequencyHistogram": true
 }
 },

181

SPC Chart Data and Notes Tooltips

You can invoke two types of tooltips using the mouse. The first is a data tooltip. When you hold the
mouse button down over one of the data points, in the primary or secondary chart, the x and y values for
that data point display in a popup tooltip.

Data Tooltip

In the default mode, the data tooltip displays the x,y value if you hover over the datapoint. If the x-axis
is a time axis then the x-value is displayed as a time stamp; otherwise, it is displayed as a simple
numeric value, as is the y-value. You can optionally display subgroup information (sample values,
calculated values, process capability values and notes) in the data tooltip window, under the x,y value,
using enable flags in the primary charts tooltip property.

Extracted from the chartdefSampleScripts.js CustomizeChartAppearance example.

 "Events": {
 "EnableDataToolTip": true,
 "EnableJSONDataToolTip": false,
 "AlarmStateEventEnable": false,
 "DataToolTip":
 {

182

 "EnableCategoryValues": true,
 "EnableProcessCapabilityValues": true,
 "EnableCalculatedValues": true,
 "EnableNotesString": true
 }

 }

where

Events.DataToolTip.EnableCategoryValues
Display the category (subgroup sample values) in the data tooltip.

Events.DataToolTip.EnableProcessCapabilityValues
Display the process capability (Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu and Ppk) statistics currently being
calculated for the chart.

Events.DataToolTip.EnableCalculatedValues
Display the calculated values used in the chart (Mean, range and sum for an Mean-Range chart).

Events.DataToolTip.EnableNotesStrings
Display the current notes string for the sample subgroup.

The variable control chart below displays a tooltip with all of the enable options above set true.

Data Tooltip with optional display items

183

If you are displaying the Notes line in the table portion of the chart, the Notes entry for a sample
subgroup will display "Y" if a note was recorded for that sample subgroup, or "N" if no note was
recorded. See the section Updating Chart Data. If you click on a "Y" in the Notes row for a sample
subgroup, the complete text of the note for that sample subgroup will display in a editable dialog box,
immediately above the "Y".

184

Notes Tooltip

Both kinds of tooltips are on by default. Turn the tooltips on or off in the program using the
Events.EnableDataToolTip and Events.EnableNotesToolTip properties.

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true,
 "EnableJSONDataToolTip": false,
 "AlarmStateEventEnable": false,
 "DataToolTip":
 {
 "EnableCategoryValues": true,
 "EnableProcessCapabilityValues": true,
 "EnableCalculatedValues": true,
 "EnableNotesString": true
 }

 },

185

The notes tooltip has an additional option. In order to make the notes tooltip "editable", the notes edit
box, displays on the first click, and goes away on the second click. You can click inside the notes box
and not worry the tooltip suddenly disappearing. The notes tooltip works this way by default. If you
wish to explicitly set it, or change it so that the tooltip only displays while the mouse button is held
down, set the Events.NotesToolTip.ToolTipMode property to MOUSEDOWN_TOOLTIP, as in the
example below.

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true,
 "EnableJSONDataToolTip": false,
 "AlarmStateEventEnable": false,
 "DataToolTip":
 {
 "EnableCategoryValues": true,
 "EnableProcessCapabilityValues": true,
 "EnableCalculatedValues": true,
 "EnableNotesString": true
 },

 "NotesToolTip": {
 "ToolTipMode": "MOUSEDOWN_TOOLTIP",
 "NotesReadOnly": true
 }

 },

Enable Alarm Highlighting

EnableAlarmStatusValues

There are several alarm highlighting options you can turn on and off. The alarm status line above is
turned on/off using the EnableAlarmStatusValues property. We have set it on by default, so you will
have to turn it off if you don’t want it. Each sample interval has two small boxes that are labeled using
one of several different characters, listed below. The most common are an "H" signifying a high alarm,
a "L" signifying a low alarm, and a "-" signifying that there is no alarm. When specialized control rules
are implemented, either using the named rules discussed in Chapter 8, or custom rules involving
trending, oscillation, or stratification, a "T", "O" or "S" may also appear.

"-" No alarm condition
"H" High - Measured value is above a high limit
"L" Low - Measured value falls below a low limit
"T" Trending - Measured value is trending up (or down).
"O" Oscillation - Measured value is oscillating (alternating) up and down.
"S" Stratification - Measured value is stuck in a narrow band.

186

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true,
 "EnableAlarmStatusValues": true

 },

ChartAlarmEmphasisMode

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true,
 "EnableAlarmStatusValues": true,

 "ChartAlarmEmphasisMode":" ALARM_HIGHLIGHT_SYMBOL"
 },

The scatter plot symbol used to plot a data point in the primary and secondary charts is normally a fixed
color circle. If you turn on the alarm highlighting for chart symbols the symbol color for a sample
interval that is in an alarm condition will change to reflect the color of the associated alarm line. In the

187

example above, a low alarm (blue circle) occurs at the beginning of the chart and a high alarm (red
circle) occurs at the end of the chart. Alarm symbol highlighting is turned on by default. To turn it off
use the ALARM_NO_HIGHLIGHT_SYMBOL constant.

TableAlarmEmphasisMode -

 "TableSetup": {

 "TableAlarmEmphasisMode": "ALARM_HIGHLIGHT_BAR"
 },

The entire column of the data table can be highlighted when an alarm occurs. There are four modes
associated with this property:

ALARM_HIGHLIGHT_NONE No alarm highlight
ALARM_HIGHLIGHT_TEXT Text alarm highlight
ALARM_HIGHLIGHT_OUTLINE Outline alarm highlight
ALARM_HIGHLIGHT_BAR Bar alarm highlight

The example above uses the ALARM_HIGHLIGHT_BAR mode.

188

The example above uses the ALARM_HIGHLIGHT_TEXT mode

The example above uses the ALARM_HIGHLIGHT_OUTLINE mode. In the table above, the column
outlines in blue and red reflect what is actually displayed in the chart, whereas in the other
TableAlarmEmphasisMode examples the outline just shows where the alarm highlighting occurs.

The default mode is ALARM_HIGHLIGHT_NONE mode.

AutoLogAlarmsAsNotes

When an alarm occurs, details of the alarm can be automatically logged as a Notes record. Just set the
MiscChartDataProperties.AutoLogAlarmsAsNotes property to true.

"MiscChartDataProperties": {
"AutoLogAlarmsAsNotes": true

}

Creating a Batch-Based Variable Control Chart
The batch-based and time-based SPC control charts are very similar and share 95% of the same
properties. Creating and initializing a batch-based SPC chart is much the same as that of a time-based
SPC chart. See the example JSON scripts for a variety of batch-based SPC Charts.

189

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

Use the InitChartProperties.SPCChartType property to set the type of the chart: Mean Range (X-Bar R
Median Range, X-Bar SigmaMean Sigma), Individual RangeEWMA, MA, or CuSum) . Note that the
X-Bar Sigma chart, with a variable subgroup sample size, is initialized using a charttype value of
MEAN_SIGMA_CHART_VSS. X-Bar Sigma charts with sub groups that use a variable sample size
must be updated properly.

The InitChartProperties block has the following properties.

SPCChartType

The SPC chart type parameter. Use one of the string constants strings: MEAN_RANGE_CHART,
MEDIAN_RANGE_CHART, MEAN_SIGMA_CHART, MEAN_SIGMA_CHART_VSS,
INDIVIDUAL_RANGE_CHART, EWMA_CHART, MA_CHART, MAMR_CHART,
MAMS_CHART and TABCUSUM_CHART,

ChartMode

Specifies if the x-axis is time-based (Time), or batch-base (Batch). Use the string constant string Time
or Batch.

NumCategories

In an Attribute Control Charts this value represents the number of defect categories used to determine
defect counts. Specify a numeric value, no quotes. Since the example above is for a Variable Control
Chart (MEAN_RANGE_CHART), the NumCategories property does not need to be set.

NumSamplesPerSubgroup

Specifies the number of samples that make up a sample subgroup. If the SPCChartType is one of the
variable sample size chart types, this value must be the maximum number of samples per subgroup.
Specify a numeric value, no quotes.

NumDatapointsInView

Specifies the number of sample subgroups displayed in the graph at one time. Specify a numeric value,
no quotes.

TimeIncrementMinutes

Specifies the approximate time increment (in minutes) between adjacent subgroup samples. This applies
only to the Time ChartMode. Specify a numeric value, no quotes. Can be a double (0.5) to specify a
fraction of a minute.

190

There are also three parameters which are used exclusively the CuSum chart type. You do not need to
include them in any other chart.

CuSumKValue

A CuSum charts K value

CuSumHValue

A CuSum charts H value

CuSumMeanValue

A CuSum charts mean value

Update the chart data using the ChartData. SampleIntervalRecords properties, and specify a batch
number (BatchCount below). Even though a time stamp value is also specified, it is not used for
positioning in the actual graph. Instead, it is used as the time stamp for the batch in the table portion of
the chart. The following code is extracted from the chartDefExampleScripts.js BatchXBarR JSON
script.

191

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628,
 33.95771604022404,
 24.310097827061817,
 28.282642847792765,
 30.2908518818265
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "BatchIDString": "IDS0",
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214,
 34.38930645615096,
 28.0203674441636,
 33.27153359969366,
 36.8305571558275
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "BatchIDString": "IDS1",
 "Note": ""
 },
 {
 "SampleValues": [
 35.21321620109259,
 32.93940741018088,
 33.66485557976163,
 34.17314124609133,
 24.576683179863725
],
 "BatchCount": 2,
 "TimeStamp": 1371832629074,
 "BatchIDString": "IDS2",
 "Note": ""
 },

.

.

.

 {
 "SampleValues": [
 30.56585901649224,
 26.764807472584284,
 30.22766077749437,
 29.43260723522982,
 27.080310485264213
],
 "BatchCount": 19,
 "TimeStamp": 1371847929074,

192

 "BatchIDString": "IDS19",
 "Note": ""
 }

]
}

Changing the Batch Control Chart X-Axis Labeling Mode

The default mode of the the x-axis tick marks of a batch control chart is to label them with the numeric
batch number of the sample subgroup. It is also possible to label the sample subgroup tick marks using
the time stamp of the sample subgroup, or a user-defined string unique to each sample subgroup.

You may find that labeling every subgroup tick mark with a time stamp, or a user-defined string, causes
the axis labels to stagger because there is not enough room to display the tick mark label without
overlapping its neighbor. In these cases you may wish to reduce the number of sample subgroups you
show on the page using the NumDatapointsInView property found in all of the example programs.

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 9,
 "TimeIncrementMinutes": 15
 },

You can rotate the x-axis labels using the charts PrimaryChartSetup.XAxisLabes.Rotation property.

 "PrimaryChartSetup": {
 "XAxisLabels": {
 "Rotation": 90
 },

If you rotate the x-axis labels you may need to leave more room between the primary and secondary
graphs, and at the bottom, to allow for the increased height of the labels.

"ChartPositioning": {
"InterGraphMargin":0.1,
"GraphBottomPos":0.85

},

Batch Control Chart X-Axis Time Stamp Labeling

193

Batch X-Bar R Chart using time stamp labeling of the x-axis

Set the x-axis labeling mode using the PrimaryChartSetup.XAxisLabels.AxisLabelMode property,
setting it AXIS_LABEL_MODE_TIME.

 "PrimaryChartSetup": {
 "XAxisLabels": {
 "AxisLabelMode": "AXIS_LABEL_MODE_TIME"
 },

See the JSON script chartDefExampleScripts.js BatchXBarRChart for a complete example. Reset the
axis labeling mode back to batch number labeling by assigning the AxisLabelMode property to
AXIS_LABEL_MODE_DEFAULT.

Batch Control Chart X-Axis User-Defined String Labeling

194

Batch X-Bar R Chart user-defined string labeling of the x-axis

Set the x-axis labeling mode using the overall charts AxisLabelMode property, setting it
AXIS_LABEL_MODE_STRING.

 "PrimaryChartSetup": {
 "XAxisLabels": {
 "AxisLabelMode": "AXIS_LABEL_MODE_STRING"
 },

Set the string using the SampleData.SampleIntervalRecords.BatchIDString property.

Reset the axis labeling mode back to batch number labeling by assigning the AxisLabelMode property
to AXIS_LABEL_MODE_DEFAULT.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628,
 33.95771604022404,

195

 24.310097827061817,
 28.282642847792765,
 30.2908518818265
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "BatchIDString": "IDS0",
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214,
 34.38930645615096,
 28.0203674441636,
 33.27153359969366,
 36.8305571558275
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "BatchIDString": "IDS1",
 "Note": ""
 },
 {
 "SampleValues": [
 35.21321620109259,
 32.93940741018088,
 33.66485557976163,
 34.17314124609133,
 24.576683179863725
],

 "BatchCount": 2,
 "TimeStamp": 1371832629074,
 "BatchIDString": "IDS2",
 "Note": ""
 },

Changing Default Characteristics of the Chart

All Variable Control Charts have two distinct graphs, each with its own set of properties. The top graph
is the Primary Chart, and the bottom graph is the Secondary Chart.

196

You can modify the default characteristics of each graph using these properties.

 "PrimaryChartSetup": {
 "FrequencyHistogram": {
 "EnableDisplayFrequencyHistogram": true,
 "PlotBackgroundColor": "WHITE",
 "BarColor": "BLUE"
 },
 "LineMarkerPlot": {
 "LineColor": "GREEN",
 "LineWidth": 2,
 "SymbolColor": "SPRINGGREEN",
 "SymbolFillColor": "SPRINGGREEN",
 "SymbolType": "CIRCLE"
 },
 "PlotBackground": {
 "FillColor": "BROWN",
 "BackgroundMode": "SIMPLECOLORMODE"
 },
 "XAxis": {
 "LineColor": "BLUE",

197

 "LineWidth": 3
 },
 "YAxisLeft": {
 "LineColor": "GREEN",
 "LineWidth": 3
 },
 "YAxisRight": {
 "LineColor": "RED",
 "LineWidth": 3
 },

Similarly, for the Secondary chart it would be:

 "SecondaryChartSetup": {
 "FrequencyHistogram": {
 "EnableDisplayFrequencyHistogram": true,
 "PlotBackgroundColor": "WHITE",
 "BarColor": "BLUE"
 },
 "LineMarkerPlot": {
 "LineColor": "GREEN",
 "LineWidth": 2,
 "SymbolColor": "SPRINGGREEN",
 "SymbolFillColor": "SPRINGGREEN",
 "SymbolType": "CIRCLE"
 },
 "PlotBackground": {
 "FillColor": "BROWN",
 "BackgroundMode": "SIMPLECOLORMODE"
 },
 "XAxis": {
 "LineColor": "BLUE",
 "LineWidth": 3
 },
 "YAxisLeft": {
 "LineColor": "GREEN",
 "LineWidth": 3
 },
 "YAxisRight": {
 "LineColor": "RED",
 "LineWidth": 3
 },

The main objects of the graph are labeled in the graph below.

198

YAxis2

XAxis

YAxis1

YAxisLab

XAxisLab

YGrid XGrid

YAxisTitle
LineMarkerPlot

PlotBackground

GraphBackground

Formulas Used in Calculating +-3 Sigma Conntrol Limits for Variable
Control Charts

The SPC control limit formulas used by AutoCalculateControlLimits in the software derive from the
following sources:

X-Bar R, X-Bar Sigma, EWMA, MA and CuSum - "Introduction to Statistical Quality Control" by
Douglas C. Montgomery, John Wiley and Sons, Inc. 2008.

Median-Range, Individual-Range - "SPC Simplified – Practical Steps to Quality" by Robert T.
Amsden, Productivity Inc., 1998.

SPC Control Chart Nomenclature

UCL = Upper Control Limit

LCL = Lower Control Limit

Center line = The target value for the process

=
X = X double-bar - Mean of sample subgroup means (also called the grand average)
_
R = R-bar – Mean of sample subgroup ranges

~
R = R-Median – Median of sample subgroup ranges

S = Sigma – sample standard deviation
_
S = Sigma-bar – Average of sample subgroup sigma’s

199

M = sample Median
~
M = Median of sample subgroup medians

X-Bar R Chart – Also known as the Mean (or Average) and Range Chart

Control Limits for the X-Bar Chart
= _

UCL = X + A2 * R

=
Center line = X

= _
LCL = X – A2 * R

Control Limits for the R-Chart
_ _

UCL = R + D4 * R

_
Center line = R

_ _
LCL = R – D3 * R

Where the constants A2 , D3 and D4 are tabulated in every SPC textbook for various sample sizes.

X-Bar Sigma – Also known as the X-Bar S Chart

Control Limits for the X-Bar Chart
= _

UCL = X + A3 * S

=
Center line = X

= _
LCL = X – A3 * S

200

Control Limits for the Sigma-Chart
_ _

UCL = B4 * S

_
Center line = S

_ _
LCL = B3 * S

Where the constants A3 , B3 and B4 are tabulated in every SPC textbook for various sample sizes.

Median Range – Also known as the Median and Range Chart

Control Limits for the Median Chart
~ ~ ~

UCL = M + A2 * R

~
Center line = M

~ ~ ~
LCL = M – A2 * R

Control Limits for the R-Chart
~ ~ ~

UCL = R + D4 * R

~
Center line = R

~ ~ ~
LCL = R – D3 * R

The constants A2 , D3 and D4 for median-range charts are different than those for mean-range charts. A
brief tabulation of the median-range chart specific values appears below

Size A2 D3 D4
2 2.22 0.0 3.87
3 1.26 0.0 2.75
4 0.83 0.0 2.38
5 0.71 0.0 2.18

201

Individual Range Chart – Also known as the X-R Chart

Control Limits for the X-Bar Chart
_ _

UCL = X + E2 * R

=
Center line = X

_ _
LCL = X – E2 * R

Control Limits for the R-Chart
_ _

UCL = R + D4 * R

_
Center line = R

LCL = 0

_
R in this case is the average of the moving ranges.
_
X in this case is the mean of the samples

Where the constants E2 and D4 are tabulated in every SPC textbook for various sample sizes.

EWMA Chart – Exponentially Weighted Moving Average

202

A EWMA chart showing the variable control limits, actual values and EWMA values

The current value (z) for an EWMA chart is calculated as an exponentially weighted moving average of
all previous samples.

zi = * xi + (1 –)zi-1

where xi is the sample value for time interval i, the smoothing value has the permissible range of 0 <
<= 1 and the starting value (required with the first sample at i = 0) is the process target value, 0 .

Control Limits for the EWMA Chart

UCL = 0 + L * * Sqrt(((/(2-)) * (1- (1-)2i))

Center line = 0

LCL = 0 - L * * Sqrt(((/(2-)) * (1- (1-)2i))

0 is the process mean

203

 is the process standard deviation, also known as sigma

 is the user specified smoothing value. A typical value for is 0.05, 0.1 or 0.2

L is the width of the control limits. The typical value for L is in the range of 2.7 to 3.0 (corresponding to
the usual three-sigma control limits).

The software does not calculate optimal and L values; that is up to you, the programmer to supply,
based on your experience with EWMA charts.

Note that the term (1- (1-)2i) approaches unity as i increases. The implies that the control limits of an
EWMA chart will reach approximate steady state values defined by:

UCL = 0 + L * * Sqrt(/(2-))

LCL = 0 - L * * Sqrt(/(2-))

It is best if you use the exact equations that take into account the sample period, so that an out of control
process can be detected using the tighter control limits that are calculated for small i.

If the EWMA chart is used with subgroup sample sizes greater than 1, the value of xi is replace by the
mean of the corresponding sample subgroup, and the value of is replaced by the value sqrt(n), where
in is the sample subgroup size.

You specify and L immediately after the initialization InitChartProperties . See the example JSON
script chartDefExampleScripts.js BatchEWMA. Specify L using the

MiscChartDataProperties.DefaultControlLimitSigma property, and using the
MiscChartDataProperties.EWMA_Lambda property. You can optionally set the EWMA starting
value (MiscChartDataProperties.EWMA_StartingValue), normally set to the process mean value,
and whether or not to use the steady-state EWMA control limits
(MiscChartDataProperties.EWMAUseSSLimits).

Extracted from the BatchEWMA example.

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "EWMA_CHART",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 1,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },
 "MiscChartDataProperties": {

 "EWMA_Lambda": 0.25,
 "EWMA_UseSSLimits": false
 },

204

MA Chart – Moving Average

A MA chart showing the variable control limits, actual values and moving average values

The current value (z) for a MA chart is calculated as a weighted moving average of the N most recent
samples.

zi = (xi + xi-1 + xi-2 + … xi-N+1)/N

where xi is the sample value for time interval i, and N is the length of the moving average.

Control Limits for the MA Chart

UCL = 0 + 3 * / sqrt(N)

Center line = 0

LCL = 0 - 3 * / sqrt(N)

0 is the process mean

205

 is the process standard deviation, also known as sigma

N is the length of the moving average used to calculate the current chart value

The software does not calculate an optimal Nvalue; that is up to you, the programmer to supply, based
on your past experience with MA charts.

For the values of zi where i < N-1, the weighted average and control limits are calculated using the
actual number of samples used in the average, rather than N. This results in expanded values for the
control limits for small i < N-1.

Control Limits for the MR part of the MAMR (Moving Average/Moving Range
Chart

Control Limits for the R-Chart
_ _

UCL = R + D4 * R

_
Center line = R

LCL = 0

_
R in this case is the average of the moving ranges.

Where the constant D4 is tabulated in every SPC textbook for various sample sizes.

Control Limits for the MS part of the MAMS (Moving Average/Moving Sigma
Chart

_ _
UCL = B4 * S

_
Center line = S

_ _
LCL = B3 * S

_
S in this case is the average of the moving sigmas.

Where the constant B4 is tabulated in every SPC textbook for various sample sizes.

206

The software does not calculate an optimal Nvalue; that is up to you, the programmer to supply, based
on your past experience with MA charts.

For the values of zi where i < N-1, the weighted average and control limits are calculated using the
actual number of samples used in the average, rather than N. This results in expanded values for the
control limits for small i < N-1.

You specify N, the length of the moving average using the MiscChartDataProperties.MA_w property.
Set the process mean and process sigma used in the control limit calculations using the ProcessMean
and ProcessSigma properties.
See the example chartDefExampleScripts.js TimeMA JSON script.

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MA_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 1,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

 "MiscChartDataProperties": {

 "MA_W": 7,
 "ProcessMean": 10,
 "ProcessSigma": 1

 },

CuSum Chart – Tabular, one-sided, upper and lower cumulative sum

207

A batch CuSum chart exceeding the H value

The tabular cusum works by accumulating deviations from the process mean, 0. Positive deviations are
accumulated in the one sided upper cusum statistic, C+, and negative deviations are accumulated in the
one sided lower cusum statistic, C-. The statistics are calculated using the following equations:

C+
i = max[0, xi - (0 + K) + C+ i-1]

C-
i = max[0, (0 - K) - xi + C+ i-1]

where the starting values are C+
0 = C-

0 = 0

0 is the process mean

K is the reference (or slack value) that is usually selected to be one-half the magnitude of the difference
between the target value, 0 , and the out of control process mean value, 1, that you are trying to detect.

K = ABS(1 - 0)/2

The control limits used by the chart are +-H. If the value of either C+ or C- exceed +- H, the process is
considered out of control.

The software does not calculate an optimal H or Kvalue; that is up to you, the programmer to supply,
based on your past experience with CuSum charts. Typically H is set equal to 5 times the process

208

standard deviation, . Typically K is selected to be one-half the magnitude of the difference between the
target value, 0 , and the out of control process mean value, 1, that you are trying to detect. You specify
H and K in the InitChartProperties block.

Extracted from MiscTimeBasedControlCharts.CUSumChart

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "TABCUSUM_CHART",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 1,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15,
 "CuSumKValue": 0.5,
 "CuSumHValue": 5.0,
 "CuSumMeanValue": 10

 },

209

11. SPC Attribute Control Charts

Introduction to SPC Attribute Control Charts
p-Chart
np-Chart
c-Chart
u-Chart
DPMO Chart

Time-Based and Batch-Based SPC Charts
Creating a Attribute Control Chart

Special Note for DPMO Charts
Adding New Sample Records for Attribute Control Charts
Chart Header Information, Measured Data and Calculated Value Table
Table and Chart Fonts
Chart Position
SPC Control Limits
Variable SPC Control Limits
Multiple SPC Control Limits
Chart Y-Scale
Updating Chart Data
Enable Chart ScrollBar
SPC Chart Histograms
SPC Chart Data and Notes Tooltips
Enable Alarm Highlighting

Creating a Batch-Based Attribute Control Chart
Adding New Sample Records for Batch Attribute Control Charts
Changing the Batch Control Chart X-Axis Labeling Mode
Batch Control Chart X-Axis Time Stamp Labeling
Batch Control Chart X-Axis User-Defined String Labeling

Changing Default Characteristics of the Chart
Formulas Used in Calculating Control Limits for Attribute Control Charts

Introduction to SPC Attribute Control Charts
Attribute Control Charts are a set of control charts specifically designed for tracking product defects
(also called non-conformities). These types of defects are binary in nature (yes/no), where a part has one
or more defects, or it doesn’t. Examples of defects are paint scratches, discolorations, breaks in the
weave of a textile, dents, cuts, etc. Think of the last car that you bought. The defects in each sample
group are counted and run through some statistical calculations. Depending on the type of Attribute
Control Chart, the number of defective parts are tracked (p-chart and np-chart), or alternatively, the
number of defects are tracked (u-chart, c-chart). The difference in terminology "number of defective
parts" and "number of defects" is highly significant, since a single part not only can have multiple defect
categories (scratch, color, dent, etc), it can also have multiple defects per category. A single part may
have 0 – N defects. So keeping track of the number of defective parts is statistically different from
keeping track of the number of defects. This affects the way the control limits for each chart are
calculated.

p-Chart - Also known as the Percent or Fraction Defective Parts Chart
For a sample subgroup, the number of defective parts is measured and plotted as either a percentage of
the total subgroup sample size, or a fraction of the total subgroup sample size. Since the plotted value is

210

a fraction or percent of the sample subgroup size, the size of the sample group can vary without
rendering the chart useless.

np-Chart – Also known as the Number Defective Parts Chart
For a sample subgroup, the number of defective parts is measured and plotted as a simple count.
Statistically, in order to compare number of defective parts for one subgroup with the other subgroups,
this type of chart requires that the subgroup sample size is fixed across all subgroups.

c-Chart - Also known as the Number of Defects or Number of Non-Conformities Chart
For a sample subgroup, the number of times a defect occurs is measured and plotted as a simple count.
Statistically, in order to compare number of defects for one subgroup with the other subgroups, this type
of chart requires that the subgroup sample size is fixed across all subgroups.

u-Chart – Also known as the Number of Defects per Unit or Number of Non-Conformities per
Unit Chart
For a sample subgroup, the number of times a defect occurs is measured and plotted as either a
percentage of the total subgroup sample size, or a fraction of the total subgroup sample size. Since the
plotted value is a fraction or percent of the sample subgroup size, the size of the sample group can vary
without rendering the chart useless.

DPMO Chart – Also known as the Number of Defects per Million Chart
For a sample subgroup, the number of times a defect occurs is measured and plotted as a value
normalized to defects per million. Since the plotted value is normalized to a fixed sample subgroup size,
the size of the sample group can vary without rendering the chart useless.

Time-Based and Batch-Based SPC Charts
Attribute Control Charts are further categorized as either time- or batch- based. Use time-based SPC
charts when data is collected using a subgroup interval corresponding to a specific time interval. Use
batch-based SPC charts when the data subgroup interval is a sequential batch number that does not
correspond to a uniform time interval. The major difference in these two types of SPC charts is the
display of the x-axis. Control charts that sample using a uniform time interval will generally use a time-
based x-axis, with time/date axis labels. Control charts that sample based on batches will generally use a
numeric-based x-axis, with numeric axis labels.

Time-Based Attribute Control Chart

211

Note the time-based x-axis.

Batch-Based Attribute Control Chart

Note the numeric based x-axis.

Attribute Control Charts Consist of Only One Graph

Whereas the Variable Control Charts contain two different graphs, which we refer to generically as the
primary and secondary graphs of the chart, Attribute Control Charts only have a single graph, which we
refer to generically as the primary graph of the chart.

Creating an Attribute Control Chart

The chart type, and whether or not is is time-based or batch-based, is defined in the SPCChart:
InitChartProperties block.

The InitChartProperties block has the following properties.

Parameters

SPCCharType
Specifies the chart type. Use one of the SPC Attribute Control chart types:
PERCENT_DEFECTIVE_PARTS_CHART, FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART, NUMBER_DEFECTS_PERUNIT_CHART,
NUMBER_DEFECTS_CHART, NUMBER_DEFECTS_PER_MILLION_CHART.

ChartMode

Specifies if the x-axis is time-based (Time), or batch-base (Batch). Use the string constant string
Time or Batch.

NumCategories
In Attribute Control Charts this value represents the number of defect categories used to
determine defect counts.

NumSamplesPerSubgroup
In an Attribute Control chart it represents the total sample size per sample subgroup from which
the defect data is counted.

212

NumDatapointsInView
Specifies the number of sample subgroups displayed in the graph at one time.

TimeIncrementMinutes

Specifies the normal time increment between adjacent subgroup samples. This applies only to the
Time ChartMode. Specify a numeric value, no quotes. Can be a double (0.5) to specify a fraction
of a minute.

The image below further clarifies how these parameters affect the attribute control chart.

numcategories = 5

numdatapointsinview = 17

timeincrementminutes = 30

Once the past the initial setup, the chart can be further customized.

Time-based Fraction Defective Parts control chart.

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "FRACTION_DEFECTIVE_PARTS_CHART",
 "ChartMode": "Time",
 "NumCategories": 5,
 "NumSamplesPerSubgroup": 50,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15

213

 },

Batch-based Fraction Defective Parts control chart.

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "FRACTION_DEFECTIVE_PARTS_CHART",
 "ChartMode": "Batch",
 "NumCategories": 5,
 "NumSamplesPerSubgroup": 50,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

Special Note for DPMO Charts

The NUMBER_DEFECTS_PER_MILLION_CHART has an important parameter you may need to set.
DPMO charts use an important parameter known is the defect opportunites per unit. The default value
for the parameter is 1. So if you are using 1 as the the value of defect opportunites per unit in your
chart, you don't need to do anything. If your value is greater than 1, you need to specify that using code
similar to below.

"MiscChartDataProperties": {
"DefectOpportunitiesPerUnit": 5

 },

Adding New Sample Records for Attribute Control Charts.

Attribute Control Chart Cross Reference
p-chart = FRACTION_DEFECTIVE_PARTS_CHART

or
PERCENT_DEFECTIVE_PARTS_CHART

np-chart = NUMBER_DEFECTIVE_PARTS_CHART

c-chart = NUMBER_DEFECTS_CHART

u-chart = NUMBER_DEFECTS_PERUNIT_CHART

DPMO = NUMBER_DEFECTS_PER_MILLION_CHART

Updating p-, np- and DPMO-charts

214

In attribute control charts, the meaning of the data in the samples array varies, depending on whether the
attribute control chart measures the number of defective parts (p-, and np-charts), or the total number of
defects (u- and c-charts). The major anomaly is that while the p- and np-charts plot the fraction or
number of defective parts, the table portion of the chart can display defect counts for any number of
defect categories (i.e. paint scratches, dents, burrs, etc.). It is critical to understand that total number of
defects, i.e. the sum of the items in the defect categories for a give sample subgroup, do NOT have to
add up to the number of defective parts for the sample subgroup. Every defective part not only can have
one or more defects, it can have multiple defects of the same defect category. The total number of
defects for a sample subgroup will always be equal to or greater than the number of defective parts.
When using p- and np-charts that display defect category counts as part of the table, where N is the
NumCategories parameter in the SPCChart.InitChartProperties initialization, the first N-1 elements
of the samples array holds the defect count for each category. The Nth element of the samples array
holds the total defective parts count.

The comments “//” cannot actually be included in a JSON script.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [

 3, // Number of defects for defect category #1
 0, // Number of defects for defect category #2
 4, // Number of defects for defect category #3
 2, // Number of defects for defect category #4

4 // TOTAL number of defective parts in the sample
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 1,
 4,
 0,
 1,

5 ‘ TOTAL number of defective parts in the sample
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },

This is obscured in our example programs a bit because we use a special method to simulate defect data
for n- and np-charts. The code below is extracted from our chartDefExampleScripts.js
TimeNumberDefectiveParts JSON script.

 "SampleData": {

215

 "DataSimulation": {
 "StartCount": 0,
 "Count": 50,
 "Mean": 6.5
 },

Updating c- and u-charts
In c- and u-charts the number of defective parts is of no consequence. The only thing that is tracked is
the number of defects. Therefore, there is no extra array element tacked onto the end of the samples
array. Each element of the samples array corresponds to the total number of defects for a given defect
category. If the NumCategories parameter in the SPCChart.InitChartProperties block is initialized to
five, the total number of elements in the samples array should be five. For example:

The comments “//” cannot actually be included in a JSON script.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [

 3, // Number of defects for defect category #1
 0, // Number of defects for defect category #2
 4, // Number of defects for defect category #3
 2, // Number of defects for defect category #4
 3, // Number of defects for defect category #5
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 1,
 4,
 0,
 1,
 2
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },

While the table portion of the display can display defect data broken down into categories, only the sum
of the defects for a given sample subgroup is used in creating the actual SPC chart.

216

Chart Header Information, Measured Data and Calculated Value Table

Standard worksheets used to gather and plot SPC data consist of three main parts.

The first part is the header section, identifying the title of the chart, the monitored process, the
machine operator, part number and other important information specific to the chart.

The second part is the measurement data recording and calculation section, organized as a table
recording the sample data and calculated values in a neat, readable fashion.

The third part plots the calculated SPC values as a SPC chart.

The chart includes options that enable the programmer to customize and automatically include header
information along with a table of the measurement and calculated data, in the SPC chart.

The following properties enable sections of the chart header and table:

EnableInputStringsDisplay
EnableCategoryValues
EnableCalculatedValues
EnableTotalSamplesValues
EnableNotes
EnableTimeValues

TableSetup
 EnableInputStringsDisplay: boolean: true
 EnableCategoryValues: boolean: true
 EnableCalculatedValues: boolean: true
 EnableTotalSamplesValues: boolean: true
 EnableNotes: boolean: true
 EnableTimeValues: boolean: true

217

EnableInputStringsDisplay = true

EnableCategoryValues = true

EnableCalculatedValues = true
EnableTotalSamplesValues = true

EnableNotes = true

EnableTimeValues = true

The example code below is extracted from the chartDefExampleScripts.js TimeFractionDefectiveParts
JSON script.

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "FRACTION_DEFECTIVE_PARTS_CHART",
 "ChartMode": "Time",
 "NumCategories": 5,
 "NumSamplesPerSubgroup": 50,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },
 "ChartPositioning": {
 "GraphStartPosX": 0.125
 },
 "Scrollbar": {
 "EnableScrollBar": true
 },
 "TableSetup": {
 "HeaderStringsLevel": "HEADER_STRINGS_LEVEL3",
 "EnableInputStringsDisplay": true,
 "EnableCategoryValues": false,
 "EnableCalculatedValues": false,
 "EnableTotalSamplesValues": false,
 "EnableNotes": false,
 "EnableTimeValues": true,

"EnableNotesToolTip": true,

218

"TableBackgroundMode": "TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL",
"BackgroundColor1": "BEIGE",
"BackgroundColor2": "LIGHTGOLDENRODYELLOW",
"TableAlarmEmphasisMode": "ALARM_HIGHLIGHT_BAR",
"ChartAlarmEmphasisMode": "ALARM_HIGHLIGHT_SYMBOL",
"ChartData": {

"Title": "Fraction Defective Parts Chart",
"PartNumber": "283501",
"ChartNumber": "17",
"PartName": "TransmissionCasingBolt",
"Operation": "Threading",
"SpecificationLimits": "27.0 to 35.0",
"Operator": "J.Fenamore",
"Machine": "#11",
"Gauge": "#8645",
"UnitOfMeasure": "0.0001inch",
"ZeroEquals": "zero",
"DateString": "7/04/2013",
"NotesMessage": "ControllimitspreparedMay10",
"NotesHeader": "NOTES"

 }
 },

The input header strings display has four sub-levels that display increasing levels of information. The
input header strings display level is set using the charts HeaderStringsLevel property. Strings that can be
displayed are: Title, PartNumber, ChartNumber, DateString, PartName, Operation, Machine,
SpecificationLimits, Gauge, UnitOfMeasure, ZeroEquals and DateString. The four levels and the
information displayed is listed below:

HEADER_STRINGS_LEVEL0 Display no header information
HEADER_STRINGS_LEVEL1 Display minimal header information: Title, PartNumber,

ChartNumber, DateString
HEADER_STRINGS_LEVEL2 Display most header strings: Title, PartNumber, ChartNumber,

PartName, Operation, Operator, Machine, DateString
HEADER_STRINGS_LEVEL3 Display all header strings: Title, PartNumber, ChartNumber,

DateString, PartName, Operation, Machine, SpecificationLimits,
Gauge, UnitOfMeasure, ZeroEquals and DateString

The TimeFractionDefectiveParts demonstrates the use of the HeaderStringsLevel property. The
example below displays a minimum set of header strings (HeaderStringsLevel =
HEADER_STRINGS_LEVEL1).

"ChartData": {
"Title": "Fraction Defective Parts Chart",
"PartNumber": "283501",
"ChartNumber": "17",
"PartName": "TransmissionCasingBolt",
"Operation": "Threading",

219

"SpecificationLimits": "27.0 to 35.0",
 "HeaderStringsLevel":"HEADER_STRINGS_LEVEL1"

The example below displays a maximum set of header strings (HeaderStringsLevel =
HEADER_STRINGS_LEVEL3).

"ChartData": {
"Title": "Fraction Defective (p) Chart",
"PartNumber": "283501",
"ChartNumber":"17",
"Operator":"B. Cornwall",
"PartName": "Left Front Fender",
"Operation": "Painting",
"SpecificationLimits":"",
"Machine":"#11",
"Gauge":"",
"UnitOfMeasure": "",
"ZeroEquals":"",
"HeaderStringsLevel": "HEADER_STRINGS_LEVEL3"

}

The identifying string displayed in front of the input header string can be any string that you want,
including non-English language string. For example, if you want the input header string for the Title to
represent a project name:

Project Name: Project XKYZ for PerQuet

Set the properties:

"StaticProperties": {
"SPCChartStrings": {

"TitleHeader": "Project Name:",
"DefaultMean": "Average",
"TimeValueRowHeader": "Time"

}
}

Change other headers using the ChartData properties listed below.

TitleHeader
PartNumberHeader
ChartNumberHeader

220

PartNameHeader
OperationHeader
OperatorHeader
MachineHeader
DateHeader
SpecificationLimitsHeader
GaugeHeader
UnitOfMeasureHeader
ZeroEqualsHeader
NotesHeader

Even though the input header string properties have names like Title, PartNumber, ChartNumber, etc.,
those names are arbitrary. They are really just placeholders for the strings that are placed at the
respective position in the table. You can display any combination of strings that you want, rather than
the ones we have selected by default, based on commonly used standardized SPC Control Charts.

Depending on the control chart type, you may want to customize the category header strings. In most of
our examples, we use the category header strings: Scratch, Burr, Dent, Seam, and Other, to represent
common defect categories. You can change these strings to anything that you want using the
ChartData.SampleRowHeaderStrings property. See the chartDefExampleScripts.js
TimeNumberDefects example JSON script.

"ChartData": {
"Title": "Fraction Defective (p) Chart",
"PartNumber": "283501",
"ChartNumber":"17",
"Operator":"B. Cornwall",
"PartName": "Left Front Fender",
"Operation": "Painting",
"SpecificationLimits":"",
"Machine":"#11",
"Gauge":"",
"UnitOfMeasure": "",
"ZeroEquals":"",
"HeaderStringsLevel": "HEADER_STRINGS_LEVEL3",
"SampleRowHeaderStrings":[" Scratch",

221

" Burr",
" Dent",
" Seam",
" Other"]

}

The ChartTable property of the chart has properties that further customize the chart. The default table
background uses the accounting style green-bar striped background. You can change this using the
ChartTable.TableBackgroundMode property. Set the value to one of the TableBackgroundMode
constants:

TABLE_NO_COLOR_BACKGROUND Constant specifies that the table does not use a
background color.

TABLE_SINGLE_COLOR_BACKGROUND Constant specifies that the table uses a single color for
the background (BackgroundColor1)

TABLE_STRIPED_COLOR_BACKGROUND Constant specifies that the table uses horizontal stripes
of color for the background (BackgroundColor1 and
BackgroundColor2)

TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL
Constant specifies that the table uses a grid background,
with BackgroundColor1 the overall background color
and BackgroundColor2 the color of the grid lines.

Extracted from the chartDefExampleScripts.js TimePercentDefectiveParts JSON script.

"TableSetup": {

"TableBackgroundMode": "TABLE_STRIPED_COLOR_BACKGROUND",
"BackgroundColor1": "BEIGE",
"BackgroundColor2": "LIGHTGOLDENRODYELLOW",

222

Extracted from the chartDefExampleScripts.js TimeNumberDefectiveParts JSON script.

"TableSetup": {

"TableBackgroundMode": "TABLE_SINGLE_COLOR_BACKGROUND",
"BackgroundColor1": "LIGHTBLUE",

Extracted from the chartDefExampleScripts.js BatchNumberDefectiveParts JSON script.

"TableSetup": {
.
.
.

 "TableBackgroundMode": "TABLE_NO_COLOR_BACKGROUND",

The TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL value will give a background color of
BackgroundColor1, and a grid outline color of BacgroundColor2.

223

"TableSetup": {
.
.
.

 "TableBackgroundMode": "TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL",
 "BackgroundColor1": "WHITE",
 "BackgroundColor2": "GRAY",
}

Table and Chart Fonts

There are a large number of fonts that you have control over, both the fonts in the table and the fonts in
the chart. The programmer can select a default font (as in the case of non-US character set), or select
individual fonts for different elements of the table and charts.

Table Fonts
The table fonts are accessed through the charts ChartTable property. Below is a list of accessible table
fonts:

TimeLabelFont The font used in the display of time values in the table.
SampleLabelFont The font used in the display of sample numeric values in the table.
CalculatedLabelFont The font used in the display of calculated values in the table.
StringLabelFont The font used in the display of header string values in the table.
NotesLabelFont The font used in the display of notes values in the table.

The StaticProperties block has property which is used to set the default table font. Use this if you want
to override the default font-family used for both tables and charts, established using the
DefaultFontName property. Setting the static properties needs to be done first thing in the first JSON
chart definition file you process.

Extracted from the chartDefExampleScripts.js TimeXBarR JSON script.

 "StaticProperties":
 {
 "DefaultFontName": "Arial, sans-serif",
 "DefaultTableFont":

224

 { "Name": "'Comic Sans MS', cursive, sans-serif",
 "Size": 12,
 "Style": "Plain"
 },

},

The ChartTable class has a static property, StaticProperties.DefaultTableFont, that sets the default
font. Use this if you want to establish a default font for all of the text in a table. This static property must
be set BEFORE the charts Init routine.

DefaultChartFonts
 AxisLabelFont

Name: String: "sans-serif"
 Size: double: 12
 Style: String: "BOLD"
 AxisTitleFont: standard Name, Size:12, Style: BOLD font properties
 MainTitleFont: standard Name, Size:18, Style: BOLD font properties
 SubHeadFont: standard Name, Size:14, Style: BOLD font properties
 ToolTipFont: standard Name, Size:12, Style: PLAIN font properties
 AnnotationFont: standard Name, Size:12, Style: PLAIN font properties
 ControlLimitLabelFont: standard Name, Size:12, Style: PLAIN font properties

Chart Position

If the SPC chart does not include frequency histograms on the left (they take up about 20% of the
available chart width), you may want to adjust the left and right edges of the chart using the
GraphStartPosX and GraphStopPlotX properties to allow for more room in the display of the data.
This also affects the table layout, because the table columns must line up with the chart data points.

"ChartPositioning": {
"GraphStartPosX": 0.1,
"GraphStopPosX": 0.875

},

There is not much flexibility positioning the top and bottom of the chart. Depending on the table items
enabled, the table starts at the position defined the TableStartPosY property, and continues until all of
the table items are displayed. It then offsets the top of the primary chart with respect to the bottom of the
table by the value of the property GraphTopTableOffset. The top of the secondary chart offsets from
the bottom of the primary chart by the amount of the property InterGraphMargin. The value of the
property GraphBottomPos defines the bottom of the graph. The default values for these properties are:

225

"ChartPositioning": {
"GraphStartPosX": 0.15,
"GraphStopPosX": 0.8,
"TableStartPosY": 0.0,
"GraphTopTableOffset": 0.02,
"InterGraphMargin": 0.075,
"GraphBottomPos": 0.90,
"BottomLabelMargin": 0.0

}

The picture below uses different values for these properties in order to emphasize the affect that these
properties have on the resulting chart.

TableStartPosY = 0.1

GraphTopTableOffset = 0.1 GraphStopPosX = 0.9GraphStartPosX = 0.1

GraphBottomPos = 0.9

SPC Control Limits

There are several ways to set the SPC control limit for a chart. The first explicitly sets the limits to
values that you calculate on your own, because of some analysis that a quality engineer does on
previously collected data. Another d auto-calculates the limits using the algorithms supplied in this
software. If you want to set the Target, LCL3 (-3-sigma limit) and UCL3 (3-sigma limit), to explicit

226

values, you can do in the Target, LCL3 and UCL3 blocks of the PrimaryChartSetup | ControlLimits
block. Assign the Value property to the limit value you want.

"ControlLimits": {

 "Target": {
 "DisplayString": "PBAR",
 "EnableAlarmLine": true,
 "EnableAlarmChecking": true,
 "LimitValue": 0.13,
 "EnableAlarmLineText": true
 },
 "LCL3": {
 "DisplayString": "LCL",
 "EnableAlarmLine": true,
 "EnableAlarmChecking": true,
 "LimitValue": 0,
 "EnableAlarmLineText": false
 },
 "UCL3": {
 "DisplayString": "UCL",
 "EnableAlarmLine": false,
 "EnableAlarmChecking": true,
 "LimitValue": 0.25,
 "EnableAlarmLineText": true
 }
 }

If you have more than the standard +- Sigma control limits, it is better if you use the
SpecifyControlLimitsUsingMeanAndSigma block to set all the limits.

SpecifyControlLimitsUsingMeanAndSigma
Mean: double: 1
Sigma: double: 1

In the example above, where the Target was 0.13, the LCL3 value 0, and the UCL value 0.25, the mean
an sigma values would be: Mean = Target = 0.13 and Sigma = (ULC3 – Mean) / 3 =0.08333

"SpecifyControlLimitsUsingMeanAndSigma": {
"Mean": 0.13,
"Sigma": 0.08333

}

There is another property block (Add3SigmaControlLimits) which will generate multiple control
limits, for +-1, 2, and 3- sigma levels, based on an initial specification of the target value, and the +-3
sigma control limits. This is most useful if you want to generate +-1, 2 and 3-sigma control limits in
order to fill in between them with a zone fill color. See the MultiLimitAttributeChart example. If you
call the AutoCalculateControlLimits method, the initial +-1,2 and 3-sigma control limit values will be

227

altered to the new, calculated values, but the control limit lines remain, with their new values. Since you
do not normally want to be generating alarm messages for excursions into the +-1 and 2-sigma limit
areas, the Add3SigmaControl limits has the option of disabling alarm notification in the case of +-1
and +-2 alarm conditions.

"ControlLimits": {
"ZoneFill": true ,
"123SigmaControlLimits": {

"Target": 0.14,
"LCL3Value": 0,
"UCL3Value": 0.28,
"AlarmTest12": true ,

 "EnableAlarmLine": true,
 "EnableAlarmChecking": false,
 "EnableAlarmLineText": true
},

}

Control Limit Fill Option used with +-1, 2 and 3-sigma control limits

The second way to set the control limits is to use the AutoCalculateControlLimits method. You must
have already added a collection of sampled data values to the charts ChartData SPC data object before
you can call this method, since the method uses the internal ChartData object to provide the historical
values needed in the calculation.

AutoCalculateControlLimits takes a boolean array parameter: one for the Primary Chart and one for
the Secondary Chart. If you leave out the array parameter, it is the same as the values [true]

 "Methods": {

228

 "AutoCalculateControlLimits": [true,true],
 "AutoScaleYAxes": [true],
 "RebuildUsingCurrentData": true
 }

Almost always, a call to AutoCalculateControlLimits will be followed by a call to AutoScaleYAxes to
rescale the chart to take into account the new control limits, and RebuildUsingCurrentData to rebuild the
graph to show the new limits.

You can add data to the ChartData object, auto-calculate the control limits to establish the SPC control
limits, and continue to add new data values. Alternatively, you can set the SPC control limits explicitly,
as the result of previous runs, using the Target, LCL3, UCL3, 123SigmaControlLimits, or
SpecifyControlLimitsUsingMeanAndSigma properties.

Need to exclude records from the control limit calculation? Mark which ones to exclude using the
SampleData | ExcludeRecords properties.

"ExcludeRecords": [2, 7, 17, 31]

Variable SPC Control Limits

There can be situations where the SPC control limit changes in a chart.

There are four ways to enter new SPC limit values. See the example program VariableControlLimits for
an example of all three methods. First, you can use the PrimaryChartSetup.ControlLimits.SetLimits
array property.

"PrimaryChartSetup": {
 "ControlLimits": {

"SetLimits": [0.11, 0.0, 0.25]

229

}
}

This method only works if you are working with the default +-3 Sigma control limits (+ targets) for the
Primary chart.

Second, you can use the AutoCalculateControlLimits method. You must have already added a
collection of sampled data values to the charts ChartData SPC data object before you can call this
method, since the method uses the internal ChartData object to provide the historical values needed in
the calculation.

Second, you can use the Methods.AutoCalculateControlLimits method. You must have already added
a collection of sampled data values to the chart before you can call this method, since the method needs
historical values needed in the calculation.

 "Methods": {
 "AutoCalculateControlLimits": [true, true]
 }

This method works to set the control limits for all sigma-based limits..

Third, you can use the PrimaryChartSetup.SpecifyControlLimitsUsingMeanAndSigma property and
just set the mean and sigma of the process.

"PrimaryChartSetup": {
"SpecifyControlLimitsUsingMeanAndSigma": {

"Mean": 0.11,
"Sigma": 0.0833

 }
}

Last, you can enter the SPC control limits with every new sample subgroup record, using
SampleData.SampleIntervalRecords.VariableControlLimits array parameter.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 4,
 1,
 2,
 3,
 5
],

 "VariableControlLimits": [0.11, 0.0, 0.25],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,

230

 "Note": ""
 },

The order of the values in the VariableControlLimits array is [Primary target, Primary LCL3, Primary
UCL3]. Other limits are ignored. This method only works if you are working with the default +-3 Sigma
control limits (+ targets) for the Primary charts.

Multiple SPC Control Limits

The normal SPC control limit displays at the 3-sigma level, both high and low.A common standard is
that if the process variable under observation falls outside of the +-3-sigma limits the process is out of
control. The default setup of our variable control charts have a high limit at the +3-sigma level, a low
limit at the -3-sigma level, and a target value. There are situations where the quality engineer also wants
to display control limits at the 1-sigma and 2-sigma level. The operator might receive some sort of
preliminary warning if the process variable exceeds a 2-sigma limit.
.

You are able to add additional control limit lines to an attribute control chart, as in the example program
Batch

231

We added a method (123SigmaControlLimits) which will generate multiple control limits, for +-1, 2,
and 3- sigma levels, based on an initial specification of the target value, and the +-3 sigma control limits.
This is most useful if you want to generate +-1, 2 and 3-sigma control limits in order to fill in between
them with a zone fill color. See the chartDefExampleScripts.js BatchFractionDefectiveParts JSON
script. If you call the AutoCalculateControlLimits method, the initial +-1,2 and 3-sigma control limit
values will be altered to the new, calculated values, but the control limit lines remain, with their new
values. Since you do not normally want to be generating alarm messages for excursions into the +-1 and
2-sigma limit areas, the 123SigmaControlLimits limits has the option of disabling alarm notification in
the case of +-1 and +-2 alarm conditions.

"PrimaryChartSetup": {
 "ControlLimits": {

"ZoneFill": false,
"123SigmaControlLimits": {

"Target": 0.13,
"LCL3Value": 0,
"UCL3Value": 0.28,

232

"AlarmTest12": false
}

 }
 },

 Control Limit Fill Option used with +-1, 2 and 3-sigma control limits

You can also add additional control limits one at a time. By default you get the +-3-sigma control limits.
So additional control limits should be considered +-2-sigma and +-1-sigma control limits. Do not
confuse control limits with specification limits, which must be added using the SpecificationLimits
block. It is critical that you add them in a specific order, that order being:

 Primary Chart SPC_LOWER_CONTROL_LIMIT_2 (2-sigma lower limit)
 Primary Chart SPC_UPPER_CONTROL_LIMIT_2 (2-sigma upper limit)
 Primary Chart SPC_LOWER_CONTROL_LIMIT_1 (1-sigma lower limit)
 Primary Chart SPC_UPPER_CONTROL_LIMIT_1 (1-sigma upper limit)

"AddControlRules": [
 {

233

 "RuleSet": "BASIC_RULES",
 "RuleNumber": 3,

 },
 {
 "RuleSet": "BASIC_RULES",
 "RuleNumber": 4
 },
 {
 "RuleSet": "BASIC_RULES",
 "RuleNumber": 5
 },
 {
 "RuleSet": "BASIC_RULES",
 "RuleNumber": 6
 }

]

Special Note – You can specify a specific value using the LimitValue propety. If you do not call the
charts AutoCalculateControlLimits method, the control limit will be displayed at that value. If you do
call AutoCalculateControlLimits method, the auto-calculated value overrides the initial value (0.0 in
the examples above). The software know what sigma level is assigned to a given control rule, and that
is used by the AutoCalculateControlLimits to calculate the control limit level.

If you want the control limits displayed as filled areas, set the charts ZoneFill flag under ControlLimits.

 "PrimaryChartSetup": {
 "ControlLimits": {

"ZoneFill": true,
"ZoneColors": ["ORANGERED", "LIGHTGOLDENRODYELLOW", "LIGHTGREEN"]

}
}

This will fill each control limit line from the limit line to the target value of the chart. In order for the fill
to work properly, you must set this property after you define all additional control limits. In order for the
algorithm to work, you must add the outer most control limits (SPC_UPPER_CONTROL_LIMIT_3
and SPC_LOWER_CONTROL_LIMIT_3) first, followed by the next outer most limits
(SPC_UPPER_CONTROL_LIMIT_2 and SPC_LOWER_CONTROL_LIMIT_2), followed by the
inner most control limits (SPC_UPPER_CONTROL_LIMIT_1 and
SPC_LOWER_CONTROL_LIMIT_1). This way the fill of the inner limits will partially cover the fill of
the outer limits, creating the familiar striped look you want to see.

Chart Y-Scale

You can set the minimum and maximum values of the two charts y-scales manually using the YAxisLeft
bloc of properties.

"YAxisLeft":
{

234

"MinValue": 0,
"MaxValue": 2.5

}

It is easiest to just call the auto-scale routines after the chart has been initialized with data, and any
control limits calculated.

 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true
 }

Once all of the graph parameters are set, call the method RebuildUsingCurrentData.

If, at any future time you change any of the chart properties, you will need to call
RebuildUsingCurrentData to force a rebuild of the chart, taking into account the current properties.
RebuildUsingCurrentData also invalidates the chart and forces a redraw. Our examples that update
dynamically demonstrate this technique. The chart is setup with some initial settings and data values. As
data is added in real-time to the graph, the chart SPC limits, and y-scales are constantly recalculated to
take into account new data values. example.

Updating Chart Data

The real-time example above demonstrates how the SPC chart data is updated, using the
SampleData.SampleIntervalRecords array property.

 "SPCChart": {

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 5,
 6,
 5,
 6,
 13
],
 "BatchCount": 50,
 "TimeStamp": 1371830829074,
 "BatchIDString": "IDS50",
 "Note": ""
 },
 {
 "SampleValues": [

235

 2,
 2,
 1,
 2,
 4
],
 "BatchCount": 51,
 "TimeStamp": 1371831729074,
 "BatchIDString": "IDS51",
 "Note": ""
 },
 {
 "SampleValues": [
 0,
 0,
 1,
 1,
 2
],
 "BatchCount": 52,
 "TimeStamp": 1371832629074,
 "BatchIDString": "IDS52",
 "Note": ""
 },
 {
 "SampleValues": [
 2,
 5,
 1,
 2,
 3
],
 "BatchCount": 53,
 "TimeStamp": 1371833529074,
 "BatchIDString": "IDS53",
 "Note": ""
 }

]
 },
 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true
 }
 }
}

In this example the sample data and the time stamp for each sample record is simulated. In your
application, you will probably be reading the sample record values from some sort of database or file,
along with the actual time stamp for that data.

236

Note: Since there is no reliable standard across browsers for time/date data, this value is expressed as
the Unix standard of elapsed milliseconds since Thursday, 1 January 1970. The TimeStamp value is
used in both time-based SPC Charts, and batch-based SPC Charts, so you must be able to convert from
time, to the millisecond equivalent value in order to input the time stamp.

If you want to include a text note in the sample record, just fillout the appropriate Note property of the
appropriate SampleIntervalRecords item..

 "SPCChart": {

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 5,
 6,
 5,
 6,
 13
],
 "BatchCount": 50,
 "TimeStamp": 1371830829074,
 "BatchIDString": "IDS50",
 "Note": "Important Note #50"
 },
 {
 "SampleValues": [
 2,
 2,
 1,
 2,
 4
],
 "BatchCount": 51,
 "TimeStamp": 1371831729074,
 "BatchIDString": "IDS51",
 "Note": "Important Note #51"
 },
 {
 "SampleValues": [
 0,
 0,
 1,
 1,
 2
],
 "BatchCount": 52,
 "TimeStamp": 1371832629074,
 "BatchIDString": "IDS52",
 "Note": "Important Note #52"
 },
 {
 "SampleValues": [
 2,

237

 5,
 1,
 2,
 3
],
 "BatchCount": 53,
 "TimeStamp": 1371833529074,
 "BatchIDString": "IDS53",
 "Note": "Important Note #53"
 }

]
 },
 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true
 }
 }
}

Scatter Plots of the Actual Sampled Data

This option is not applicable for attribute control charts.

Enable Chart ScrollBar

Set the Scrollbar.EnableScrollBar property true to enable the chart scrollbar. You will then be able to
window in on 8-20 sample subgroups at a time, from a much larger collection of measurement data
representing hundreds or even thousands of subgroups, and use the scrollbar to move through the data,
similar to paging through a spreadsheet.

"Scrollbar": {
 "EnableScrollBar": true,
 "ScrollbarPosition": "SCROLLBAR_POSITION_MAX"
},

You can also set the initial value of the scroll bar so some know value, using the ScrollbarValue
property, or you can force the go to the maximum value of the scroll bar after any data updates. That
way the most recent data will always be in view. Or, you can specify that after a
RebuildUsingCurrentData, which usually increases the scroll bars range of values, that the scrollbar
position to show the must recently added data ("SCROLLBAR_POSITION_MAX"), or the oldest data
("SCROLLBAR_POSITION_MIN").

238

SPC Chart Histograms

Viewing frequency histograms of the variation in the primary variable side-by-side with the SPC control
chart makes it even easier to find out whether the variations are the result of natural variations or the
result of some systemic change in the process. You can turn on integrated frequency histograms for
either chart using the PrimaryChartSetup.FrequencyHistogram.
EnableDisplayFrequencyHistogram property of the chart.

 "PrimaryChartSetup": {
 "FrequencyHistogram": {
 "EnableDisplayFrequencyHistogram": true
 }
 },

SPC Chart Data and Notes Tooltips

In the default mode, the data tooltip displays the x,y value of the data point nearest the mouse click. If
the x-axis is a time axis then the x-value is displayed as a time stamp; otherwise, it is displayed as a
simple numeric value, as is the y-value. You can optionally display subgroup information (sample

239

values, calculated values, process capability values and notes) in the data tooltip window, under the x,y
value, using enable flags in the primary charts tooltip property.

Events
EnableDataToolTip: boolean: true
EnableJSONDataToolTip: boolean: false
DataToolTip
 EnableCategoryValues: boolean: false
 EnableProcessCapabilityValues: boolean: false
 EnableCalculatedValues: boolean: false
 EnableNotesString: boolean: false
EnableNotesToolTip: boolean: true
NotesToolTip;

 ButtonMask: SPC String constant: "BUTTON1_MASK"
 ToolTipMode: SPC String constant: "MOUSETOGGLE_TOOLTIP"
 NotesReadOnly: boolean: false

where

Events.DataToolTip.EnableCategoryValues
Display the category (subgroup sample values) in the data tooltip.

Events.DataToolTip.EnableProcessCapabilityValues
Display the process capability (Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu and Ppk) statistics currently being
calculated for the chart.

Events.DataToolTip.EnableCalculatedValues
Display the calculated values used in the chart (Mean, range and sum for an Mean-Range chart).

Events.DataToolTip.EnableNotesStrings
Display the current notes string for the sample subgroup.

Extracted from the BatchFractionDefectiveParts example.

 "Events": {
 "EnableDataToolTip": true,
 "AlarmStateEventEnable": true
 },

240

Data Tooltip

If you are displaying the Notes line in the table portion of the chart, the Notes entry for a sample
subgroup will display "Y" if a note was recorded for that sample subgroup, or "N" if no note was
recorded. See the section Updating Chart Data. If you click on a "Y" in the Notes row for a sample
subgroup, the complete text of the note for that sample subgroup will display in a editable dialog box,
immediately above the "Y".

241

Notes Tooltip

Both kinds of tooltips are on by default. Turn the tooltips on or off in the program using the
Events.EnableDataToolTip and Events.EnableNotesToolTip properties.

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true,
 "EnableJSONDataToolTip": false,
 "AlarmStateEventEnable": false,
 "DataToolTip":
 {
 "EnableCategoryValues": true,
 "EnableProcessCapabilityValues": true,
 "EnableCalculatedValues": true,
 "EnableNotesString": true
 }

 },

242

The notes tooltip has an additional option. In order to make the notes tooltip "editable", the notes edit
box, displays on the first click, and goes away on the second click. You can click inside the notes box
and not worry the tooltip suddenly disappearing. The notes tooltip works this way by default. If you
wish to explicitly set it, or change it so that the tooltip only displays while the mouse button is held
down, set the Events.NotesToolTip.ToolTipMode property to MOUSEDOWN_TOOLTIP, as in the
example below.

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true,
 "EnableJSONDataToolTip": false,
 "AlarmStateEventEnable": false,
 "DataToolTip":
 {
 "EnableCategoryValues": true,
 "EnableProcessCapabilityValues": true,
 "EnableCalculatedValues": true,
 "EnableNotesString": true
 },

 "NotesToolTip": {
 "ToolTipMode": "MOUSEDOWN_TOOLTIP",
 "NotesReadOnly": true
 }

 },

Enable Alarm Highlighting

EnableAlarmStatusValues

243

There are several alarm highlighting options you can turn on and off. The alarm status line above is
turned on/off using the EnableAlarmStatusValues property. We have set it on by default, so you will
have to turn it off if you don’t want it. Each sample interval has two small boxes that are labeled using
one of several different characters, listed below. The most common are an "H" signifying a high alarm,
a "L" signifying a low alarm, and a "-" signifying that there is no alarm. When specialized control rules
are implemented, either using the named rules discussed in Chapter 8, or custom rules involving
trending, oscillation, or stratification, a "T", "O" or "S" may also appear.

"-" No alarm condition
"H" High - Measured value is above a high limit
"L" Low - Measured value falls below a low limit
"T" Trending - Measured value is trending up (or down).
"O" Oscillation - Measured value is oscillating (alternating) up and down.
"S" Stratification - Measured value is stuck in a narrow band.

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true,
 "EnableAlarmStatusValues": true

244

 },

ChartAlarmEmphasisMode

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true,
 "EnableAlarmStatusValues": true,

 "ChartAlarmEmphasisMode":" ALARM_HIGHLIGHT_SYMBOL"
 },

The scatter plot symbol used to plot a data point in the chart is normally a fixed color circle. If you turn
on the alarm highlighting for chart symbols the symbol color for a sample interval that is in an alarm
condition will change to reflect the color of the associated alarm line. In the example above, a low alarm
(blue circle) occurs at the beginning of the chart and a high alarm (red circle) occurs at the end of the
chart. Alarm symbol highlighting is turned on by default. To turn it off use the
ALARM_NO_HIGHLIGHT_SYMBOL constants.

245

TableAlarmEmphasisMode -

 "TableSetup": {

 "TableAlarmEmphasisMode": "ALARM_HIGHLIGHT_BAR",
 },

The entire column of the data table can be highlighted when an alarm occurs. There are four modes
associated with this property:

ALARM_HIGHLIGHT_NONE No alarm highlight
ALARM_HIGHLIGHT_TEXT Text alarm highlight
ALARM_HIGHLIGHT_OUTLINE Outline alarm highlight
ALARM_HIGHLIGHT_BAR Bar alarm highlight

The example above uses the ALARM_HIGHLIGHT_BAR mode.

The example above uses the ALARM_HIGHLIGHT_TEXT mode

246

The example above uses the ALARM_HIGHLIGHT_OUTLINE mode. In the table above, the column
outlines in blue and red reflect what is actually displayed in the chart, whereas in the other
TableAlarmEmphasisMode examples the outline just shows where the alarm highlighting occurs.

The default mode is ALARM_HIGHLIGHT_NONE mode.

AutoLogAlarmsAsNotes

When an alarm occurs, details of the alarm can be automatically logged as a Notes record. Just set the
AutoLogAlarmsAsNotes property to true.

"MiscChartDataProperties": {
"AutoLogAlarmsAsNotes": true

}

247

Creating a Batch-Based Attribute Control Chart
The batch-based and time-based SPC charts are very similar and share 95% of all properties in
common. Creating and initializing a batch-based SPC chart is much the same as that of a time-based
SPC chart. The chart type, and whether or not is is time-based or batch-based, is defined in the
SPCChart.InitChartProperties block.

The InitChartProperties block has the following properties.

Parameters

SPCCharType
Specifies the chart type. Use one of the SPC Attribute Control chart types:
PERCENT_DEFECTIVE_PARTS_CHART, FRACTION_DEFECTIVE_PARTS_CHART,
NUMBER_DEFECTIVE_PARTS_CHART, NUMBER_DEFECTS_PERUNIT_CHART,
NUMBER_DEFECTS_CHART, NUMBER_DEFECTS_PER_MILLION_CHART.

ChartMode

Specifies if the x-axis is time-based (Time), or batch-base (Batch). Use the string constant string
Time or Batch.

NumCategories
In Attribute Control Charts this value represents the number of defect categories used to
determine defect counts.

NumSamplesPerSubgroup
In an Attribute Control chart it represents the total sample size per sample subgroup from which
the defect data is counted.

NumDatapointsInView
Specifies the number of sample subgroups displayed in the graph at one time.

TimeIncrementMinutes

Specifies the normal time increment between adjacent subgroup samples. This applies only to the
Time ChartMode. Specify a numeric value, no quotes. Can be a double (0.5) to specify a fraction
of a minute.

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "FRACTION_DEFECTIVE_PARTS_CHART",
 "ChartMode": "Batch",
 "NumCategories": 5,
 "NumSamplesPerSubgroup": 50,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

248

Adding New Sample Records for Batch Attribute Control Charts.

Attribute Control Chart Cross Reference
p-chart = FRACTION_DEFECTIVE_PARTS_CHART

or
PERCENT_DEFECTIVE_PARTS_CHART

np-chart = NUMBER_DEFECTIVE_PARTS_CHART

c-chart = NUMBER_DEFECTS_CHART

u-chart = NUMBER_DEFECTS_PERUNIT_CHART

DPMO = NUMBER_DEFECTS_PER_MILLION_CHART

Updating p-, np- and DPMO-charts
In attribute control charts, the meaning of the data in the samples array varies, depending on whether the
attribute control chart measures the number of defective parts (p-, and np-charts), or the total number of
defects (u- and c-charts). The major anomaly is that while the p- and np-charts plot the fraction or
number of defective parts, the table portion of the chart can display defect counts for any number of
defect categories (i.e. paint scratches, dents, burrs, etc.). It is critical to understand that total number of
defects, i.e. the sum of the items in the defect categories for a give sample subgroup, do NOT have to
add up to the number of defective parts for the sample subgroup. Every defective part not only can have
one or more defects, it can have multiple defects of the same defect category. The total number of
defects for a sample subgroup will always be equal to or greater than the number of defective parts.
When using p- and np-charts that display defect category counts as part of the table, where N is the
NumCategories parameter in the InitChartProperties initialization call, the first N-1 elements of the
samples array holds the defect count for each category. The Nth element of the samples array holds the
total defective parts count.

The comments “//” cannot actually be included in a JSON script.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [

 3, // Number of defects for defect category #1
 0, // Number of defects for defect category #2
 4, // Number of defects for defect category #3
 2, // Number of defects for defect category #4

4 // TOTAL number of defective parts in the sample
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 1,

249

 4,
 0,
 1,

5 ‘ TOTAL number of defective parts in the sample
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },

This is obscured in our example programs a bit because we use a special method to simulate defect data
for n- and np-charts. The code below is extracted from our chartDefExampleScripts.js
BatchNumberDefectiveParts JSON script.

 "SampleData": {
 "DataSimulation": {
 "StartCount": 0,
 "Count": 50,
 "Mean": 6.5
 },

Updating c- and u-charts
In c- and u-charts the number of defective parts is of no consequence. The only thing that is tracked is
the number of defects. Therefore, there is no extra array element tacked onto the end of the samples
array. Each element of the samples array corresponds to the total number of defects for a given defect
category. If the NumCategories parameter in the InitChartProperties is initialized to five, the total
number of elements in the samples array should be five. For example:

The comments “//” cannot actually be included in a JSON script.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [

 3, // Number of defects for defect category #1
 0, // Number of defects for defect category #2
 4, // Number of defects for defect category #3
 2, // Number of defects for defect category #4
 3, // Number of defects for defect category #5
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 1,
 4,

250

 0,
 1,
 2
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },

While the table portion of the display can display defect data broken down into categories, only the sum
of the defects for a given sample subgroup is used in creating the actual SPC chart.

Changing the Batch Control Chart X-Axis Labeling Mode

The default mode of the the x-axis tick marks of a batch control chart is to label them with the numeric
batch number of the sample subgroup. It is also possible to label the sample subgroup tick marks using
the time stamp of the sample subgroup, or a user-defined string unique to each sample subgroup.

You may find that labeling every subgroup tick mark with a time stamp, or a user-defined string, causes
the axis labels to stagger because there is not enough room to display the tick mark label without
overlapping its neighbor. In these cases you may wish to reduce the number of sample subgroups you
show on the page using the NumDatapointsInView property found in all of the example programs.

 "SPCChart": {
 "InitChartProperties": {

 "SPCChartType": "FRACTION_DEFECTIVE_PARTS_CHART",
 "ChartMode": "Batch",
 "NumCategories": 5,
 "NumSamplesPerSubgroup": 50,
 "NumDatapointsInView": 12

 },

You can rotate the x-axis labels using the charts XAxisLabels.Rotation property.

 "PrimaryChartSetup": {
 "XAxisLabels": {
 "Rotation": 90
 },

If you rotate the x-axis labels you may need to leave more room between the primary and secondary
graphs, and at the bottom, to allow for the increased height of the labels.

"ChartPositioning": {
"InterGraphMargin":0.1,

251

"GraphBottomPos":0.85
},

Batch Control Chart X-Axis Time Stamp Labeling

Fraction Defective Parts Chart using time stamp labeling of the x-axis

Set the x-axis labeling mode using the PrimaryChartSetup.XAxisLabels.AxisLabelMode property,
setting it AXIS_LABEL_MODE_TIME.

 "PrimaryChartSetup": {
 "XAxisLabels": {
 "AxisLabelMode": "AXIS_LABEL_MODE_TIME"
 },

See the example program BatchXBarRChart for a complete example. Reset the axis labeling mode back
to batch number labeling by assigning the AxisLabelMode property to
AXIS_LABEL_MODE_DEFAULT.

Batch Control Chart X-Axis User-Defined String Labeling

252

Defective Parts Chart using user-defined string labeling of the x-axis

Set the x-axis labeling mode using the overall charts AxisLabelMode property, setting it
AXIS_LABEL_MODE_STRING.

"PrimaryChartSetup": {
"XAxisLabels": {

"AxisLabelMode": "AXIS_LABEL_MODE_STRING"
 },

Set the string using the SampleData.SampleIntervalRecords.BatchIDString property.

Reset the axis labeling mode back to batch number labeling by assigning the AxisLabelMode property
to AXIS_LABEL_MODE_DEFAULT.

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 5,
 6,
 5,
 6,
 13
],
 "BatchCount": 50,
 "TimeStamp": 1371830829074,
 "BatchIDString": "IDS50",
 "Note": ""
 },

253

 {
 "SampleValues": [
 2,
 2,
 1,
 2,
 4
],
 "BatchCount": 51,
 "TimeStamp": 1371831729074,
 "BatchIDString": "IDS51",
 "Note": ""
 },
 {
 "SampleValues": [
 0,
 0,
 1,
 1,
 2
],
 "BatchCount": 52,
 "TimeStamp": 1371832629074,
 "BatchIDString": "IDS52",
 "Note": ""
 },
 {
 "SampleValues": [
 2,
 5,
 1,
 2,
 3
],
 "BatchCount": 53,
 "TimeStamp": 1371833529074,
 "BatchIDString": "IDS53",
 "Note": ""
 }

]
 },

Changing Default Characteristics of the Chart

All Attribute Control Charts have one distinct graph with its own set of properties. This graph is the
Primary Chart.

254

Primary Chart

You can modify the default characteristics of each graph using these properties.

 "PrimaryChartSetup": {
 "FrequencyHistogram": {
 "EnableDisplayFrequencyHistogram": true,
 "PlotBackgroundColor": "WHITE",
 "BarColor": "BLUE"
 },
 "LineMarkerPlot": {
 "LineColor": "GREEN",
 "LineWidth": 2,
 "SymbolColor": "SPRINGGREEN",
 "SymbolFillColor": "SPRINGGREEN",
 "SymbolType": "CIRCLE"
 },
 "PlotBackground": {
 "FillColor": "BROWN",
 "BackgroundMode": "SIMPLECOLORMODE"
 },
 "XAxis": {
 "LineColor": "BLUE",
 "LineWidth": 3
 },
 "YAxisLeft": {
 "LineColor": "GREEN",
 "LineWidth": 3

255

 },
 "YAxisRight": {
 "LineColor": "RED",
 "LineWidth": 3
 },

The main objects of the graph are labeled in the graph below.

YAxis2

XAxis

YAxis1

YAxisLab

XAxisLab

YGrid XGrid

YAxisTitle
LineMarkerPlot

PlotBackground

GraphBackground

Formulas Used in Calculating Control Limits for Attribute Control
Charts

The SPC control limit formulas used in the software derive from the following source:

Fraction Defective Parts, Number Defective Parts, Number Defects, Number Defects Per Unit -
"Introduction to Statistical Quality Control" by Douglas C. Montgomery, John Wiley and Sons, Inc.
2001.

Percent Defective Parts - "SPC Simplified – Practical Steps to Quality" by Robert T. Amsden,
Productivity Inc., 1998.

SPC Control Chart Nomenclature

UCL = Upper Control Limit

LCL = Lower Control Limit

Center line = The target value for the process

p = estimate (or average) of the fraction defective (or non-conforming) parts

P = estimate (or average) of the percent defective (or non-conforming) parts

256

c = estimate (or average) of the number of defects (or nonconformities)

u = estimate (or average) of the number of defects (or nonconformities) per unit

n = number of samples per subgroup

dopu = defect opportunities per unit (applies only the DPMO chart)

dpmo = defects per million opportunities (applies only the DPMO chart)
calculated as: dpmo = (1,000,000 * numberOfDefects) / (sampleSize * dopu)

up = estimate (or average) of the dpmo values

Fraction Defective Parts – Also known as Fraction Non-Conforming or p-chart

UCL = p + 3 * Sqrt (p * (1- p) / n)

Center line = p

LCL = p - 3 * Sqrt (p * (1- p) / n)

Percent Defective Parts – Also known as Percent Non-Conforming or p-chart

UCL = p + 3 * Sqrt (pP * (100% - p) / n)

Center line = p

LCL = p - 3 * Sqrt (p * (100% - p) / n)

Number of Defective Parts – Also known as the Number Nonconforming or np-chart

UCL = (n * p) + 3 * Sqrt ((n * p) * (1- p) / n)

Center line = (n * p)

257

LCL = (n * p) - 3 * Sqrt ((n * p) * (1- p) / n)

In this case the value (n * p) represents the average number of defective parts per sample
subgroup. Since p is the estimate (or average) of the fraction defective per sample
subgroup, n * p is the average number of defective per sample subgroup. Or you can add
up all the number defective parts in all subgroups and divide by the number of subgroups,
that to will reduce to the average number of defective per sample subgroup

Number Defects Per Million – Also known as DPMO

UCL = up + 3000 * Sqrt (up /(dopu * n))

Center line = up

LCL = up - 3000 * Sqrt (up/(dopu * n))

Number of Defects Control Chart – Also known as Number Nonconformities or c-chart

UCL = c + 3 * Sqrt (c)

Center line = c

LCL = c - 3 * Sqrt (c)

Number of Defects per Unit Control Chart – Also known as Number Nonconformities per Unit or
u-chart

UCL = u + 3 * Sqrt (u / n)

Center line = u

LCL = u - 3 * Sqrt (u / n)

258

259

12. Process Capability Ratios and Process Performance Indices

Introduction to Process Capability Ratios and Process Performance
Formulas Used in Calculating the Process Capability Ratios

Introduction to Process Capability Ratios and Process Performance
The data table also displays any process capability statistics that you want to see. The software supports
the calculation and display of the Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppu, Ppl, and Ppk process capability
statistics.

In order to display process capability statistics you must first specify the process specification limits that
you want the calculations based on. These are not the high and low SPC control limits calculate by this
software; rather they externally calculated limits based on the acceptable tolerances allowed for the
process under measure. Set the lower specification limit (LSL) and upper specification limit (USL)
using the ChartData.ProcessCapabilitySetup.LSLValue and
ChartData.ProcessCapabilitySetup.USLValue properties of the chart. The code below is from the
chartDefExampleScripts.js TimeXBarR example JSON script.

 "ChartData": {

 "ProcessCapabilitySetup": {
 "LSLValue": 27,
 "USLValue": 35,

 "EnableCPK": true,
 "EnableCPM": true,
 "EnablePPK": true

 }

 }

Enable which process capability statistics you want to see in the table. Use one of the Enable properties
constants below to specify the statistics that you want displayed.

 EnableCPK: boolean: false
 EnableCPM: boolean: false
 EnablePPK: boolean: false
 EnableCPL: boolean: false
 EnableCPU: boolean: false
 EnablePPL: boolean: false
 EnablePPU: boolean: false

The code below is from the chartDefExampleScripts.js TimeXBarR example JSON script.

"ChartData": {

260

 "ProcessCapabilitySetup": {
 "LSLValue": 27,
 "USLValue": 35,

 "EnableCPK": true,
 "EnableCPM": true,
 "EnablePPK": true

 }
}

This selection will add three rows to the data table, one row each for the Cpk, Cpm and Ppk process
capability statistics. Once these steps are carried out, the calculation and display of the statistics is
automatic.

Formulas Used in Calculating the Process Capability Ratios
The formulas used in calculating the process capability statistics vary. We use the formulas found in the
textbook. "Introduction to Statistical Quality Control" by Douglas C. Montgomery, John Wiley and
Sons, Inc. 2001.

SPC Control Chart Nomenclature

USL = Upper Specification Limit

LSL = Lower Specification Limit

261

Tau = Midpoint between USL and LSL = ½ * (LSL + USL)

=
X = XDoubleBar - Mean of sample subgroup means (also called the grand average)
_
R = RBar – Mean of sample subgroup ranges

S = Sigma – sample standard deviation – all samples from all subgroups are used to calculate the
standard deviation S.
_
S = SigmaBar – Average of sample subgroup sigma’s. Each sample subgroup has a calculated standard
deviation and the SigmaBar value is the mean of those subgroup standard deviations.

d2 = a constant tabulated in every SPC textbook for various sample sizes.

By convention, the quantity RBar/d2 is used to estimate the process sigma for the Cp, Cpl and Cpu
calculations

MINIMUM – a function that returns the lesser of two arguments

SQRT – a function returning the square root of the argument.

Process Capability Ratios (Cp, Cpl, Cpu, Cpk and Cpm)

Cp = (USL – LSL) / (6 * RBar/d2)

Cpl = (XDoubleBar – LSL) / (3 * RBar/d2)

Cpu = (USL - XDoubleBar) / (3 * RBar/d2)

Cpk = MINIMUM (Cpl, Cpu)

Cpm = Cp / (SQRT(1 + V2)

where

V = (XDoubleBar – Tau) / S

262

Process Performance Indices (Pp, Ppl, Ppu, Ppk)

Pp = (USL – LSL) / (6 * S)

Ppl = (XDoubleBar – LSL) / (3 * S)

Ppu = (USL - XDoubleBar) / (3 *S)

Ppk = MINIMUM (Ppl, Ppu)

The major difference between the Process Capability Ratios (Cp, Cpl, Cpu, Cpk) and the Process
Performance Indices (Pp, Ppl, Ppu, Ppk) is the estimate used for the process sigma. The Process
Capability Ratios use the estimate (RBar/d2) and the Process Performance Indices uses the sample
standard deviation S. If the process is in control, then Cp vs Pp and Cpk vs Ppk should returns
approximately the same values, since both (RBar/d2) and the sample sigma S will be good estimates of
the overall process sigma. If the process is NOT in control, then ANSI (American National Standards
Institute) recommends that the Process Performance Indices (Pp, Ppl, Ppu, Ppk) be used.

263

264

13. Named and Custom Control Rule Sets

Name Rule Sets
Western Electric (WECO) Rules
Nelson Rules
AIAG Rules
Juran Rules
Hughes Rules
Gitlow Rules
Duncan Rules
Westgard Rules

Control Rule Templates
Implementing a Named Rule Set
Modifying Existing Named Rules
Creating Custom Rules Sets Based on Named Rules
Creating Custom Rules Sets Based on a Template
Creating Custom Rules Not Associated With Sigma Levels

Named Rule Sets
The normal SPC control limit rules display at the 3-sigma level, both high and low. In this case, a
simple threshold test determines if a process is in, or out of control. Once a process is brought under
control using the simple 3-sigma level tests, quality engineers often want to increase the sensitivity of
the control chart, detecting and correcting problems before the 3-sigma control limits are reached.
Other, more complex tests rely on more complicated decision-making criteria. These rules utilize
historical data and look for a non-random pattern that can signify that the process is out of control,
before reaching the normal +-3 sigma limits. The most popular of these are the Western Electric Rules,
also know as the WECO Rules, or WE Runtime Rules. First implemented by the Western Electric Co.
in the 1920's, these quality control guidelines were codified in the 1950's and form the basis for all of
the other rule sets. Different industries across the globe have have developed their own variants on the
WECO Rules. Other sets of rules, common enough to have an identifying name, i.e. named rules, are
listed below.

WECO Runtime and Supplemental Rules – Western Electric Co. - Western Electric Company
(1956), Statistical Quality Control handbook. (1 ed.), Indianapolis, Indiana: Western Electric Co., p. v,
OCLC 33858387. Sometimes the Supplemental Rules are referred to as the Montgomery Rules, after
the statistical quality control expert Douglas Mongtomery. Introduction to Statistical Quality Control
(5 ed.), Hoboken, New Jersey: John Wiley & Sons, ISBN 9780471656319

Nelson Rules – The Nelson rules were first published in the October 1984 issue of the Journal of
Quality Technology in an article by Lloyd S Nelson.

AIAG Rules– The (AIAG) Automotive Industry Action Group control rules are published in the their
industry group "Statistical Process Control Handbook".

Juran Rules - Joseph M. Juran was an international expert in quality control and defined these rules in
his "Juran's Quality Handbook", McGraw-Hill Professional; 6 edition (May 19, 2010), ISBN-10:
0071629734

http://en.wikipedia.org/wiki/Special:BookSources/9780471656319
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/John_Wiley_%26_Sons
http://en.wikipedia.org/wiki/Hoboken,_New_Jersey
http://en.wikipedia.org/wiki/Statistical_Quality_Control
http://www.worldcat.org/oclc/33858387
http://en.wikipedia.org/wiki/Online_Computer_Library_Center
http://en.wikipedia.org/wiki/Indianapolis,_Indiana
http://en.wikipedia.org/wiki/Statistical_Quality_Control
http://en.wikipedia.org/wiki/Western_Electric_Company

265

Hughes Rules – The only sources we could find for the Hughes rules were all second hand. If anyone
can direct is to an original source for the Hughes Rules, please send an e-mail to support@quinn-
curtis.com.

Duncan Rules – Acheson Johnston Duncan was an international expert in quality control and
published his rules in the text book "Quality control and industrial statistics" (fifth edition). Irwin,
1986.

Gitlow Rules - Dr. Howard S. Gitlow is an international expert in Sigma Six, TQM and SPC. His
rules are found in his book "Tools and Methods for the Improvement of Quality", 1989, ISBN-10:
0256056803 .

Westgard Rules – The Westgard rules are based on the work of James Westgard, a leading expert in
laboratory quality management . They are considered "Laboratory quality control rules". You can find
more information about the Westgard Rules, and James Westgard at the web site:
http://www. westgard .com

The rules sets have many individual rules in common. In particular, the WECO rules and the Nelson
rules, have 7 out of 8 rules in common, and only differ in the fourth rule.

Western Electric (WECO) Rules
 In the Western Electric Rules a process is considered out of control if any of the following criteria are
met:

1. The most recent point plots outside one of the 3-sigma control limits. If a point lies outside either
of these limits, there is only a 0.3% chance that this was caused by the normal process.

2. Two of the three most recent points plot outside and on the same side as one of the 2-sigma
control limits. The probability that any point will fall outside the warning limit is only 5%. The
chances that two out of three points in a row fall outside the warning limit is only about 1%.

3. Four of the five most recent points plot outside and on the same side as one of the 1-sigma
control limits. In normal processing, 68% of points fall within one sigma of the mean, and 32% fall
outside it. The probability that 4 of 5 points fall outside of one sigma is only about 3%.

4. Eight out of the last eight points plot on the same side of the center line, or target value.
Sometimes you see this as 9 out of 9, or 7 out of 7. There is an equal chance that any given point will
fall above or below the mean. The chances that a point falls on the same side of the mean as the one
before it is one in two. The odds that the next point will also fall on the same side of the mean is one in
four. The probability of getting eight points on the same side of the mean is only around 1%.

http://www.westgard.com/
http://www.westgard.com/
http://www.westgard.com/

266

These rules apply to both sides of the center line at a time. Therefore, there are eight actual alarm
conditions: four for the above center line sigma levels and four for the below center line sigma levels.

There are also additional WE Rules for trending. These are often referred to as WE Supplemental
Rules. Don't rely on the rule number, often these are listed in a different order.

5. Six points in a row increasing or decreasing. The same logic is used here as for rule 4 above.
Sometimes this rule is changed to seven points rising or falling.

6. Fifteen points in a row within one sigma. In normal operation, 68% of points will fall within
one sigma of the mean. The probability that 15 points in a row will do so, is less than 1%.

7. Fourteen points in a row alternating direction. The chances that the second point is always
higher than (or always lower than) the preceding point, for all seven pairs is only about 1%.

8. Eight points in a row outside one sigma. Since 68% of points lie within one sigma of the
mean, the probability that eight points in a row fall outside of the one-sigma line is less than 1%.

The rules are described as they appear in the literature. In many cases, a given rule actually
specifies two test conditions; the first being a value N out of M above a plus sigma control limit,
and the second being a value N out of M below a minus sigma control limit. Examples of this are
rules #1, #2 and #3 for WECO and Nelson rules. In other cases, similar rules only contain one
test case; N out of M above (or below) a given sigma control limit. Example of this are the Juran
rules #2..#5, Hughes Rules #2..#9, Gitlow Rules #2..#5, and Duncan Rules #2..#5.

While the list of named rules below follow what is presented in the literature, the actual rule
numbering should be ignored. That is because in the software we implement all rules as simple
single condition rules. The first rule in all of the named rule sets is implemented as two rules; a
single point greater than 3-sigma; and a single point less than -3-sigma. And WECO and Nelson
rules #2 and #3 are implemented as four rules; two N out of M greater than x-sigma condition
limits, and two N out of M less than x-sigma condition limits. A complete cross reference to the
named rules listed below, and our own rule number system is found in Table 1. This is important,
because when you try to access a particular named rule within the software, you must use our
rule number system.

Nelson Rules
The Nelson rules are almost identical to the combination of the WECO Runtime and Supplemental
Rules. The only difference is in Rule #4.

4. Nine out of the last nine points plot on the same side of the center line, or target value.

AIAG Rules
1. One of one point is outside of 3-sigma control limit
2. Seven out of seven are above or below center line

267

3. Seven points in a row increasing
4. Seven points in a row decreasing

Juran Rules
1. One of one point is outside of +- 3-sigma control limit
2. Two of three points above 2-sigma control limit
3. Two of three points below -2-sigma control limit
4. Four of five points is above 1-sigma control limit
5. Four of five points is below -1-sigma control limit
6. Six points in a row increasing
7. Six points in a row decreasing
8. Nine out of nine are above or below center line
9. Eight points in a row on both sides of center line, none in zone C

Hughes Rules
1. One of one point is outside of +- 3-sigma control limit
2. Two of three points above 2-sigma control limit
3. Two of three points below -2-sigma control limit
4. Three of seven points above 2-sigma control limit
5. Three of seven points below -2-sigma control limit
6. Four of ten points above 2-sigma control limit
7. Four of ten points below -2-sigma control limit
8. Four of five points is above 1-sigma control limit
9. Four of five points is below -1-sigma control limit
10. Seven points in a row increasing
11. Seven points in a row decreasing
12. Ten of eleven are above center line
13. Ten of eleven are below center line
14. Twelve of fourteen are above center line
15. Twelve of fourteen are below center line

Gitlow Rules

1. One of one point is outside of +- 3-sigma control limit
2. Two of three points above 2-sigma control limit
3. Two of three points below -2-sigma control limit
4. Four of five points is above 1-sigma control limit
5. Four of five points is below -1-sigma control limit

268

6. Eight points in a row increasing
7. Eight points in a row decreasing
8. Eight out of Eight are above center line
9. Eight out of Eight are below center line

Duncan Rules

1. One of one point is outside of +- 3-sigma control limit
2. Two of three points above 2-sigma control limit
3. Two of three points below -2-sigma control limit
4. Four of five points is above 1-sigma control limit
5. Four of five points is below -1-sigma control limit
6. Seven points in a row increasing
7. Seven points in a row decreasing

Westgard Rules

1. One of one point is outside of +- 3-sigma control limits - 13s
2. Two of two points outside +-2-sigma control limits - 22s
3. Four of four points outside +-1-sigma control limits - 41s
4. Ten of ten points on one side of center line - 10x
5. Two adjacent points on opposite sides of +-2-sigma - R4s
6. Seven of seven points in a trend increasing or decreasing - 7T
7. One of one point is outside of +- 2-sigma control limits – 12s
8. Two of three points outside +-2-sigma control limits - 2of32s
9. Three of three points outside +-1-sigma control limits - 31s
10. Six of six points on one side of center line - 6x
11. Eight of eight points on one side of center line - 8x
12. Nine of nine points on one side of center line - 9x
13. Twelve of twelve points on one side of center line – 12x

By default, only the first six Westgard rules described above are enabled. The others can be
turned on using the UseNamedRuleSet method and setting ruleflags array elements true for
the additional rules. Make sure you use our rule numbers and not the rule numbering above.

Control Rule Templates
All of the named rules fall into one of our standard rule categories. Each rule category is a flexible
template which can be used to evaluate a test condition across a wide range of parameters. A list of the
template categories appears below.

269

Standardized Templates for Control Rule Evaluation

Template #
Standard Control Limit tests

1 N of M above X sigma (from center line), used for UCL tests
2 N of M below X sigma (from center line), used for LCL tests
3 Reserved
4 N of M beyond X sigma (from center line, either side) or control limits – points beyond

the +- limit values – don't have to all be on one side

Trending
5 N of M trending up (increasing)
6 N of M trending down (decreasing)
7 N of M trending up (increasing) or down (decreasing)

Hugging (lack of variance)
8 N of M within X sigma (from center line, either side)
9 N of M within X sigma of each other (no reference to center line)

Oscillation
10 N of M alternating about X sigma (from center line)
11 N of M alternating (no reference to center line)

For example, rule #1 for all of the named rules (a single point plots outside of +- 3 sigma) is
implemented as one instance of template #1 (N of M above X sigma, where N=1, M=1 and X = 3) and
one instance of template #2 (N of M below X sigma) where N=1, M=1 and X = -3).

Rule #2 for WECO and Nelson (two of three point plots outside of +- 2 sigma) is implemented as one
instance of template #1 (N of M above X sigma, where N=2, M=3 and X = 2) and one instance of
template #2 (N of M below X sigma) where N=2, M=3 and X = -2).

Rule #4 and #5 for Hughes (three of seven points above/below 2-sigma control limit) is implemented
as one instance of template #1 (N of M above X sigma, where N=3, M=7 and X = 2) and one instance
of template #2 (N of M below X sigma) where N=3, M=7 and X = -2).

Rule #6 for Gitlow (eight points in a row increasing) is implemented as one instance of template #5 (N
of M trending up) where N=8 and M=8.

The templates are important because using them you can modify any existing named rule, changing the
M, N or X parameter. Or, you can create completely new rules.

Taking these factors into account, we have redefined and renumbered the rules, identifying each with
the template and parameters used by each rule, .

270

271

Standardized Template Parameters and Rule # Cross Reference for Named Rules

Basic Rules New
Rule # Description Rule # Template # N of M X

#1 1 of 1 < 3 sigma 1 1 1 1 -3
1 of 1 > 3 sigma 2 2 1 1 3

we have expanded the Basic Rule #'s to include the following additional rules, which might be used in
some cases. These rules would only be enabled in a special case.

#2 1 of 1 < 2 sigma 3 1 1 1 -2
1 of 1 > 2 sigma 4 2 1 1 2

#3 1 of 1 < 1 sigma 5 1 1 1 -1
1 of 1 > 1 sigma 6 2 1 1 1

WECO New
Rule # Description Rule # Template # N of M X

#1 1 of 1 < 3 sigma 1 1 1 1 -3
1 of 1 > 3 sigma 2 2 1 1 3

#2 2 of 3 < 2 sigma 3 1 2 3 -2
2 of 3 > 2 sigma 4 2 2 3 2

#3 4 of 5 < sigma 5 1 4 5 -1
4 of 5 > sigma 6 2 4 5 1

#4 8 of 8 < center line 7 1 8 8 0
8 of 8 > center line 8 2 8 8 0

WECO+Supplemental New
Rule # Description Rule # Template # N of M X

#1 1 of 1 < 3 sigma 1 1 1 1 -3
1 of 1 > 3 sigma 2 2 1 1 3

#2 2 of 3 < 2 sigma 3 1 2 3 -2
2 of 3 > 2 sigma 4 2 2 3 2

#3 4 of 5 < sigma 5 1 4 5 -1
4 of 5 > sigma 6 2 4 5 1

#4 8 of 8 < center line 7 1 8 8 0
8 of 8 > center line 8 2 8 8 0

#5 6 of 6 incr. or dec. 9 7 6 6 0
#6 15 of 15 within 1 sigma 10 8 15 15 1
#7 14 of 14 alternating 11 11 14 14 0
#8 8 of 8 outside zone C 12 4 8 8 1

272

Nelson New
Rule # Description Rule # Template # N of M X

#1 1 of 1 < 3 sigma 1 1 1 1 -3
1 of 1 > 3 sigma 2 2 1 1 3

#2 2 of 3 < 2 sigma 3 1 2 3 -2
2 of 3 > 2 sigma 4 2 2 3 2

#3 4 of 5 < sigma 5 1 4 5 -1
4 of 5 > sigma 6 2 4 5 1

#4 9 of 9 < center line 7 1 9 9 0
9 of 9 > center line 8 2 9 9 0

#5 6 of 6 incr. or dec. 9 7 6 6 0
#6 15 of 15 within 1 sigma 10 8 15 15 1
#7 14 of 14 alternating 11 11 14 14 0
#8 8 points outside zone C 12 4 8 8 1

AIAG New
Rule # Description Rule # Template # N of M X

#1 1 of 1 < 3 sigma 1 1 1 1 -3
1 of 1 > 3 sigma 2 2 1 1 3

#2 7 of 7 < center line 3 1 7 7 0
#3 7 of 7 > center line 4 2 7 7 0
#4 7 of 7 increasing 5 5 7 7 0
#5 7 of 7 decreasing 6 6 7 7 0

Juran New
Rule # Description Rule # Template # N of M X

#1 1 of 1 < 3 sigma 1 1 1 1 -3
1 of 1 > 3 sigma 2 2 1 1 3

#2 2 of 3 < 2 sigma 3 1 2 3 -2
#3 2 of 3 > 2 sigma 4 2 2 3 2
#4 4 of 5 < sigma 5 1 4 5 -1
#5 4 of 5 > sigma 6 2 4 5 1
#6 6 of 6 increasing 7 5 6 6 0
#7 6 of 6 decreasing 8 6 6 6 0
#8 9 of 9 > center line 9 1 9 9 0
#9 9 of 9 < center line 10 2 9 9 0
#10 8 of 8 outside zone C 11 4 8 8 1

Hughes New
Rule # Description Rule # Template # N of M X

#1 1 of 1 < 3 sigma 1 1 1 1 -3
1 of 1 > 3 sigma 2 2 1 1 3

273

#2 2 of 3 < 2 sigma 3 1 2 3 -2
#3 2 of 3 > 2 sigma 4 2 2 3 2
#4 3 of 7 < 2 sigma 5 1 3 7 -2
#5 3 of 7 > 2 sigma 6 2 3 7 2
#6 4 of 10 < 2 sigma 7 1 4 10 -2
#7 4 of 10 > 2 sigma 8 2 4 10 2
#8 4 of 5 < sigma 9 1 4 5 -1
#9 4 of 5 > sigma 10 2 4 5 1
#10 7 of 7 increasing 11 5 7 7 0
#11 7 of 7 decreasing 12 6 7 7 0
#12 10 of 11 < center line 13 1 10 11 0
#13 10 of 11 > center line 14 2 10 11 0
#14 12 of 14 < center line 15 1 12 14 0
#15 12 of 14 > center line 16 2 12 14 0

Gitlow New
Rule # Description Rule # Template # N of M X

#1 1 of 1 < 3 sigma 1 1 1 1 -3
1 of 1 > 3 sigma 2 2 1 1 3

#2 2 of 3 < 2 sigma 3 1 2 3 -2
#3 2 of 3 > 2 sigma 4 2 2 3 2
#4 4 of 5 < sigma 5 1 4 5 -1
#5 4 of 5 > sigma 6 2 4 5 1
#6 8 of 8 increasing 7 5 8 8 0
#7 8 of 8 decreasing 8 6 8 8 0
#8 8 of 8 < center line 9 1 8 8 0
#9 8 of 8 > center line 10 2 8 8 0

Duncan New
Rule # Description Rule # Template # N of M X

#1 1 of 1 < 3 sigma 1 1 1 1 -3
1 of 1 > 3 sigma 2 2 1 1 3

#2 2 of 3 < 2 sigma 3 1 2 3 -2
#3 2 of 3 > 2 sigma 4 2 2 3 2
#4 4 of 5 < sigma 5 1 4 5 -1
#5 4 of 5 > sigma 6 2 4 5 1
#6 7 of 7 increasing 7 5 7 7 0
#7 7 of 7 decreasing 8 6 7 7 0

Westgard New
Rule # Description Rule # Template # N of M X

1 1 of 1 < 3 sigma 1 1 1 1 -3

274

1 of 1 > 3 sigma 2 2 1 1 3
2 2 of 2 < 2 sigma 3 1 2 2 -2

2 of 2 > 2 sigma 4 2 2 2 2
3 4 of 4 < 1 sigma 5 1 4 4 -1

4 of 4 > 1 sigma 6 2 4 4 1
4 10 of 10 < centerline 7 1 10 10 0

10 of 10 > centerline 8 2 10 10 0
5 R2s – 2-sigma limits 9 10 1 1 2
6 7 of 7 trending 10 7 7 7 0
7 1 of 1 > 2 sigma 11 1 1 1 -2

1 of 1 < 2 sigma 12 2 1 1 2
8 2 of 3 > 3 sigma 13 1 2 3 -2

2 of 3 < 3 sigma 14 2 2 3 2
9 3 of 3 > 1 sigma 15 1 3 3 -1

3 of 3 < 1 sigma 16 2 3 3 1
10 6 of 6 < centerline 17 1 6 6 0

6 of 6 > centerline 18 2 6 6 0
11 8 of 8 < centerline 19 1 8 8 0

8 of 8 > centerline 20 2 8 8 0
12 9 of 9 < centerline 21 1 9 9 0

9 of 9 > centerline 22 2 9 9 0
13 12 of 12 < centerline 23 1 12 12 0

12 of 12 > centerline 24 2 12 12 0

Implementing a Named Rule Set
You are able to add a named rule set to an SPC application using a single call. Call the
UseNamedRuleSet method, passing in the appropriate rule ID.

NamedRuleSet

NamedRuleSet
 RuleSet: string constant
 RuleEnable [boolean, boolean …]

The NameRuleSet property will invoke a complete set of control rules based one of following standard
rule sets: BASIC_RULES, WECO_RULES,WECOANDSUPP_RULES,
NELSON_RULES,AIAG_RULES, JURAN_RULES, HUGHES_RULES,GITLOW_RULES,
WESTGARD_RULES,and DUNCAN_RULES. For a complete discussion of named control rules, see
chapter xxxx.

RuleSet

275

One of the SPCControlLimitRecord named rule identifiers: BASIC_RULES,
WECO_RULES,WECOANDSUPP_RULES, NELSON_RULES,AIAG_RULES, JURAN_RULES,
HUGHES_RULES,GITLOW_RULES, WESTGARD_RULES,and DUNCAN_RULES.

RuleEnable

An array of boolean, one for each named rule in the rule set. All of the rules are enabled by default.
This permits you to disable specific rules.

Example

"NamedRuleSet":
{
 "RuleSet": "WECO_RULES",
 "RuleEnable": [true, true, false, true, false, true, true, true]
}

*Important Note: All rule numbering is based on our rule numbering, which separates greater than
and less than tests into separate rules, as detailed in the previous tables. You use our rule numbering
system for specifying which rule.

See one of the following JSON scripts for examples of how to setup an SPC chart for a given set of
control rules: WECORules, WECOAndSupplementalRules, NelsonRules, AIAGRules, HughesRule.
Once you add a set of named control rules to your SPC chart, the next thing you will want to do is set
the control limits. You can either set the limits using known values, or you can have our software
calculate the limits using previously acquired sample data.

If you want to explicitly set the limits you must know the historical process mean (also called the center
line) and the historical process sigma. You may already know your process sigma, or you may need to
calculate it as 1/3 * (UCL – process mean), where UCL is your historical +3-sigma upper control limit.
Once you have those two values, everything else is automatic. Just call the
SpecifyControlLimitsUsingMeanAndSigma method. It will run through all of the control limit
records and fill out the appropriate limit values and other critical parameters.

SpecifyControlLimitsUsingMeanAndSigma

SpecifyControlLimitsUsingMeanAndSigma
Mean: double: 1
Sigma: double: 1

If you want to explicitly set the limits you must know the historical process mean (also called the center
line) and the historical process sigma. You may already know your process sigma, or you may need to
calculate it as 1/3 * (UCL – process mean), where UCL is your historical +3-sigma upper control limit.
Once you have those two values, everything else is automatic. Just invoke

276

SpecifyControlLimitsUsingMeanAndSigma method. It will run through all of the control limit records
and fill out the appropriate limit values and other critical parameters.

Mean

specify the process mean.

Sigma

specify the process sigma.

The center line value and sigma have different meanings for the Primary and Secondary charts. So the
SpecifyControlLimitsUsingMeanAndSigma and Sigma applies to only one at a time. If you use it for
the secondary chart control limits, use your historical center line value for the secondary chart type you
are using. Calculate the sigma value as 1/3 * (UCL – center line), where UCL is your historical +3-
sigma upper control limit for your secondary chart.

"SpecifyControlLimitsUsingMeanAndSigma": {
"Mean": 30,
"Sigma": 1.666

};

You can also auto-calculate the control limits by adding test data to your application (fed into the chart
using the SampleData block), and calling AutoCalculateControlLimits. This establishes control
limits for each control rule of the named rule set and makes control limit checking possible. You will
find the AutoCalculateControlLimits method used in all of SPC charts which establish named rule sets.

 "PrimaryChartSetup": {
 "ControlLimits":
 {

 "ZoneFill": true,
 "NamedRuleSet":
 {
 "RuleSet": "WECO_RULES"

 }
 }

 },
"SampleData": {

 "DataSimulation": {
 "StartCount": 0,
 "Count": 50,
 "Mean": 27,
 "Range": 5
 }

},
"Methods": {

 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true

277

}

Modifying Existing Named Rules
Perhaps you like everything about a named rule set, except for one or more rules. For example, you
want to use the Hughes rules, but want to change the N of M parameters of rules #15 and #16. You do
that using the NamedRuleSet.CustomizeRules array property.

NamedRuleSet
RuleSet: SPC string constant
RuleEnable [boolean, boolean …]
CustomizeRules: [{

 "RuleNumber": 15,
 "M": 18,
 "N": 15

},
 { "RuleNumber": 15,
 "M": 18,
 "N": 15

},
...

]

CustomizeRules
An array, one for each rule you want to modify in the ruleset. Each block in the array contains the rule
number, the M-value (N out of M must exceed the limit value for a violation to occur) and an N-value.

RuleNumber
The rule number (our rule number)

M
The M-value (N out of M must exceed the limit value for a violation to occur). Specifies the
number of values to use in calculation

N
The N-value (N out of M must exceed the limit value for a violation to occur)
The example below changes the N of M parameters of Hughes rules #15 and #16 from their
default N of M value (12 of 14), to the values (15 of 18). Specifies the number of values that
must be outside alarm limit for rule violation.

"PrimaryChartSetup": {
"NamedRuleSet":
{

"RuleSet": "HUGHES_RULES",
"CustomizeRules": [
{

278

"RuleNumber": 15,
"M": 18,
"N": 15

},
{

"RuleNumber": 16,
"M": 18,
"N": 15

 }
]
 }

},

Creating Custom Rules Sets Based on Named Rules

You can create your own custom set of rules, mixing and matching rules from the standard, named rule
sets, using the the AddControlRule method. Also, you can invent your own rules, based on one of our
standard templates, and add those rules to your custom rule set.

AddControlRules
[{

RuleSet: : SPC String constant: "BASIC_RULES"
RuleNumber: integer: 2
EnableAlarmLine: boolean: true
EnableAlarmChecking: boolean: true
EnableAlarmLineText: String: true

 M: integer: 1
 N: integer: 1

},
{

RuleSet: : SPC String constant: "BASIC_RULES"
RuleNumber: integer: 2
EnableAlarmLine: boolean
EnableAlarmChecking: boolean
EnableAlarmLineText: String

 M: integer: 1
 N: integer: 1

}, ...

]

The AddControlRules property is an array of control rule specifications. Since it is an array, you can
add as many control rules as you want. Each specification block in the array defines one control rule.
Note how the control rule array is bracketed by [], signifying the start and and of the array. Each block
element in the array is bracketed using { }.

A control rule block element has the following parameters:

279

RuleSet

One of the SPCControlLimitRecord named rule identifiers: BASIC_RULES,
WECO_RULES,WECOANDSUPP_RULES, NELSON_RULES,AIAG_RULES, JURAN_RULES,
HUGHES_RULES,GITLOW_RULES, WESTGARD_RULES,and DUNCAN_RULES.

RuleNumber

The rule number (our rule number)

EnableAlarmLine

Enable the drawing of the limit line for the control rule.

EnableAlarmCheckin

Enable alarm checking for the the control rule.

EnableAlarmLineText

Enable the drawing of the limit text for the control rule.

M

The M-value (N out of M must exceed the limit value for a violation to occur,)

N

The N-value (N out of M must exceed the limit value for a violation to occur)

A multi-rule example would look something like:

"AddControlRules": [
 {
 "RuleSet": "WECO_RULES",
 "RuleNumber": 2
 },
 {
 "RuleSet": "WECO_RULES",
 "RuleNumber": 3
 },
 {
 "RuleSet": "NELSON_RULES",
 "RuleNumber": 12
 },
 {
 "RuleSet": "JURAN_RULES",
 "RuleNumber": 9,

"EnableAlarmLine": false,
 "EnableAlarmChecking": true,
 "EnableAlarmLineText": false

280

 }
]

Even if you do use AddControlRules, you still start with four control limits. These correspond to the +-
3-sigma control limits, for both the Primary and Secondary (were applicable) chart. So, you do not
need to add those to your custom set of rules. Start with the rules you want to add after the standard +-
3-sigma rules. If, for some reason you cannot live with the default +-3-sigma rules, you can disable
them with a call to ControlLimits.DefaultLimits[false, false].

DefaultLimits [boolean: true, boolean: true]

Specifies whether default UCL and LCL limits are enabled.

DefaultLimits is an array of two booleans.

DefaultLimits[0]

Set to false to disable the checking of the default +- 3 Sigma limits, also known as UCL (upper control
limits) and LCL (lower control limit).

DefaultLimits[1]

Set to false to disable drawing the +- 3 Sigma limits lines and associated text.

"DefaultLimits": [false, false],

Say you want to create custom rule set for the Primary chart, combining rules from Nelson (#3, #4),
Juran (#5, #5), AIAG (#3,#4), Hughes (#12) and Duncan (#8). The default +-3 -sigma rules are left in
place.

"ControlLimits": {
"AddControlRules": [

{
"RuleSet": "NELSON_RULES",
"RuleNumber": 3

},
{

"RuleSet": "NELSON_RULES",
"RuleNumber": 4

},
{

"RuleSet": "JURAN_RULES",
"RuleNumber": 5

},
{

"RuleSet": "JURAN_RULES",
"RuleNumber": 6

281

},
{

"RuleSet": "AIAG_RULES",
"RuleNumber": 5

},
{

"RuleSet": "AIAG_RULES",
"RuleNumber": 6

},
{

"RuleSet": "HUGHES_RULES",
"RuleNumber": 12

},
{

"RuleSet": "DUNCAN_RULES",
"RuleNumber": 8

}
]

}

Normally there will be no reason to set custom rules for the secondary chart, since all of the named
rules apply to the Primary chart. Nothing stops you from doing it though. Whether it makes any
statistical sense is doubtful.

Creating Custom Rules Sets Based on a Template
Add your own custom rule to the rule set using different parameters of the AddControlRule method.
This one specifies a template, N out of M values, a sigma level to attach the control rule to, and a flag
on whether or not to display a limit line for the control rule. If you have multiple control rules attached
to a given sigma level, you should only display a control line for one of them.

A control rule block element has the following parameters:

RuleSet

One of the named rule identifiers: BASIC_RULES, WECO_RULES,WECOANDSUPP_RULES,
NELSON_RULES,AIAG_RULES, JURAN_RULES, HUGHES_RULES,GITLOW_RULES,
WESTGARD_RULES, DUNCAN_RULES and CUSTOM_TEMPLATE_BASED_RULE.

RuleNumber

The rule number (our rule number). If the RuleSet is of type
CUSTOM_TEMPLATE_BASED_RULE, then the RuleNumber specifies the template number of the
desired template.

EnableAlarmLine

282

Enable the drawing of the limit line for the control rule.

EnableAlarmChecking

Enable alarm checking for the the control rule.

EnableAlarmLineText

Enable the drawing of the limit text for the control rule.

M

The M-value (N out of M must exceed the limit value for a violation to occur,)

N

The N-value (N out of M must exceed the limit value for a violation to occur)

If the RuleSet is CUSTOM_TEMPLATE_BASED_RULE, the following parmeters are also valid:

SigmaLevel

The sigma level of the desired control rule template.

In your code it would something like:

"ControlLimits": {
"AddControlRules": [

{
"RuleSet": "CUSTOM_TEMPLATE_BASED_RULE",
"RuleNumber": 1,
"N": 10,
"M": 13,
"SigmaLevel": -2,
"EnableAlarmLine": false,
"EnableAlarmLineText": false

},
{

"RuleSet": "CUSTOM_TEMPLATE_BASED_RULE",
"RuleNumber": 1,
"N": 10,
"M": 13,
"SigmaLevel": 2,
"EnableAlarmLine": false,
"EnableAlarmLineText": false

}
]

}

283

Creating Custom Rules Not Associated With Sigma Levels
Most of the preceding control rules are based on the mean and sigma of the current control chart. The
trending rules (N of M increasing/ decreasing) are an exception, because they don't use the mean or
sigma value anywhere in their evaluation. Regardless, since many of the named rules include trending
rules, they are included with the previous section. Specification limits are control rules not directly
related to the mean and sigma value of the chart. Use a SpecificaitonLimits block to add spec limits to a
chart.

SpecificationLimits
Font

Name: String: "sans-serif"
Size: double: 12
Style: SPC String Constant: "PLAIN"

Decimal: integer: 1
LowSpecificationLimit

LineColor: Color String constant: "BLUE"
 TextColor: Color String constant: "BLACK"
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "LSL"
 EnableAlarmLine: boolean: true

EnableAlarmChecking : boolean: true
 EnableAlarmLineText: String: true

HighSpecificationLimit: double
LineColor: Color String constant: "RED"

 TextColor: Color String constant: "BLACK"
 LineWidth: double: 1
 LimitValue: double: 0
 DisplayString: String: "USL"
 EnableAlarmLine: boolean: true

EnableAlarmChecking : boolean: true

Font

Specifies the Font used to annotate the control limits on the RHS of the chart.

Font
Name: String: "sans-serif"
Size: double: 12
Style: SPC String Constant: "PLAIN"

284

Name

Set the axis labels font family to something other than the default "sans-serif". Follow the font naming
guidelines detailed in Static Properties chapter, under DefaultTableFont

Size

Font size in points.

Style

Use of the style string constants: "Plain", "Normal", "Bold","Italic","Bold Italic".

Decimal
Decimal: integer: 1

Decimal

Set to the decimal precision to display the limit values.

LowSpecificationLimit

LowSpecificationLimit
LineColor: Color String constant: "BLUE"
TextColor: Color String constant: "BLACK"
LineWidth: double: 1
LimitValue: double: 0
DisplayString: String: "LSL"
EnableAlarmLine: boolean: true
EnableAlarmChecking : boolean: true

 EnableAlarmLineText: String: true

Set the properties associated with the Low SpecificationLimit (LSL) line

LineColor

The line color of the limit line.

TextColor

The text color of the limit line label.

LineWidth

The line width of the limit line

LimitValue

Set the limit value.

DisplayString

285

Set the text string which precedes the numeric value of the limit line label.

EnableAlarmLine

Set to false to disable the alarm line.

EnableAlarmChecking

Set to false to disable the limit testing against the limit value.

EnableAlarmLineText

Set to false to disable the limit line text on the right.

HighSpecificationLimit

HighSpecificationLimit
LineColor: Color String constant: "RED"
TextColor: Color String constant: "BLACK"
LineWidth: double: 1
LimitValue: double: 0
DisplayString: String: "USL"
EnableAlarmLine: boolean: true
EnableAlarmChecking : boolean: true

Set the properties associated with the High SpecificationLimit (HSL) line.
Same property set as LowSpecificationLimi.t

Enable Alarm Highlighting

The alarm status line above is turned on/off using the EnableAlarmStatusValues property. We have
set it on by default, so you will have to turn it off if you don’t want it. Each sample interval has two
small boxes that are labeled using one of several different characters, listed below. The most common
are an "H" signifying a high alarm, a "L" signifying a low alarm, and a "-" signifying that there is no
alarm. When specialized control rules are implemented, using the named rules, or custom rules
involving trending, oscillation, or stratification, a "T", "O" or "S" may also appear.

"-" No alarm condition
"H" High - Measured value is above a high limit
"L" Low - Measured value falls below a low limit
"T" Trending - Measured value is trending up (or down).
"O" Oscillation - Measured value is oscillating (alternating) up and down.
"S" Stratification - Measured value is stuck in a narrow band.

286

Trending

Oscillation

287

Stratification

 "Events": {
 "EnableAlarmStatusValues": true

 },

288

14. Event Handling for Alarms and Tooltips

Processing Alarms
Processing Data Tooltips

Standard Data Tooltips
User-Define Data Tooltips and Annotations
SPCChartMouseEvent
SPCChartMouseEventResult

The alarm processing and notes components of the SPC Charting Tools generate events which can in
turn invoke events in the Javascript code of the host HTML page. This is done using GWT JSNI
routines which allow a bridge between the SPC Chart library, and the Javacode you write for your
HTML page.

Processing Alarms

First, you must have one of the alarm event processing routines turned on. This is done in the Events
block using the Events.AlarmStateEventEnable, or Events.AlarmTransitionEventEnable properties.

Events
AlarmStateEventEnable: boolean: true
AlarmTransitionEventEnable: boolean: false

AlarmStateEventEnable

If AlarmStateEventEnable is true, then at every sample interval, if the process variable is in any alarm
condition, it triggers an alarm event.

AlarmTransitionEventEnable

If AlarmTransitionEventEnable is true, then only the transition into and out of an alarm condition
triggers an alarm event. So if the process variable enters an alarm condition, and stays there, only the
sample interval where the alarm condition starts triggers an event. A new event is triggered only if the
process variable leaves the alarm condition, or enters a different one.

"Events": {

 "AlarmStateEventEnable": true

},

If that is done, any control limit violations for the chart will try and vector into the host HTML file.
Specifically, it will try and vector to a Javascript function with the name JSONSPCAlarmEvent,
passing in a JSON object detailing the control limit violation. The JSONSPCAlarmEvent function in

289

your HTML must use the template below, slightly modified from the SPCMediumSimple example
program:

 function JSONSPCAlarmEvent(s)
 {
 var jsonobj = JSON.parse(s);
 var message = jsonobj.SPCAlarmEvent.AlarmMessage;
 var index = jsonobj.SPCAlarmEvent.DataIndex;
 }

The event data is passed into the function as a JSON string, which you can parse into a standard
Javascript record variable. The data structures contained therein can be accessed as any Javascript
record structure. The structure of the data is:

SPCAlarmEvent
ChartNumber: integer
DataIndex: integer
AlarmLimitValue: double
CurrentValue: double
TimeStampLong: long
TimeStampString: string
AlarmMessage: string
SigmaLevel: double
Template: integer
RuleSet: integer
RuleNumber: integer
IsSigmaLimit: boolean
NumberValuesForRuleViolation: integer
NumberValuesInCalculation: integer

The way it actually appears as a JSON string, using actual values, is:

 {
 "SPCAlarmEvent": {

 "ChartNumber": 0,
 "DataIndex": 7,

 "AlarmLimitValue": 21,
 "CurrentValue": 22,
 "TimeStampLong": 1371831729074,
 "TimeStampString": "07/21/2013 13:11:01",
 "AlarmMessage": "High Alarm",

"SigmaLevel": 3,
"Template": 0,
"RuleSet": 0,
"RuleNumber": 1,
"IsSigmaLimit": true,
"NumberValuesForRuleViolation": 1,
"NumberValuesInCalculation": 1

 }
}

290

The data values of the fields in the SPCAlarmEvent structure are a accessed using the standard
Javascript dot notation, as seen in the JSONSPCAlarmEvent example above.

ChartNumber

This value is always 0 in the current version of the software.

DataIndex

The index of the sample interval of the alarm in the current chart.

AlarmLimitValue

The control limit value at the sample interval of the alarm. Since some control charts can have variable
control limits, the control limit can vary from sample interval to sample interval.

CurrentValue

The value of the process variable at the sample interval of the alarm.

TimeStampLong

The time stamp of the sample interval as a long number, representing milliseconds.

TimeStampString

A string representation of the type sample of the sample interval.

AlarmMessage

The alarm message associated with the alarm.

SigmaLevel

The sigma level of the alarm. Only applicatible if IsSigmaLimit true.

Template

The template number of the alarm.

RuleSet

Identifies the RuleSet of the alarm.

RuleNumber

291

Identifies the Rule Number of the alarm.

IsSigmaLimit

True if the control limit is sigma-based. Otherwise it is probably a specification limit, which is not
sigma-based

NumberValuesForRuleViolation

The N of an N of M test. Specifies the number of values (N) , out of NumberValuesInCalculation (M)
sequential values tested.

NumberValuesInCalculation

The M of an N of M test. Specifies the number of sequential values tested for a given control limit test.

 One of the things that the GWT JSNI interface allows the library to do is to check to see if a
JSONSPCAlarmEvent is present in the host HTML file. If it finds it it calls it, otherwise it skips the
call. What it can't do is determine if the code in the JSONSPCAlarmEvent is valid Javascript. So if you
have an error in the JSONSPCAlarmEvent, it won't work correctly.

Example

You will find an example of processing an alarm in the SPCMediumSimple.html file.

Processing Data Tooltips

First, you must have one of the data tooltip processing routines turned on. This is done in the Events
block using the Events.EnableDataToolTip , or Events. EnableJSONDataToolTip properties.

Events

EnableDataToolTip: boolean: true
EnableJSONDataToolTip: boolean: false
DataToolTip

 EnableCategoryValues: boolean: false
 EnableProcessCapabilityValues: boolean: false
 EnableCalculatedValues: boolean: false
 EnableNotesString: boolean: false

The EnableDataToolTip option is self-contained. You can set various options for what is displayed in
the tool tip, items such as the sample values, process capabilitiyvalues, calculated values and the notes
string. Those items are displayed in a pop-up box if you click on a data point in the chart. The
EnableJSONDataToolTip option allows you to display anything you want in the pop-up window.
When the mouse is clicked on a data point, that information is vectored into the parent HTML file,
where you can define a custom string, and return that string to the tool tip processing routine, where it
is displayed in the pop-up window.

292

Standard Data Tooltips

The properties below work together. If EnableDataToolTip is true, when a data point is clicked on, a
tool tip will appear with the display options enabled under the DataToolTip block.

Events

EnableDataToolTip: boolean: true
DataToolTip

 EnableCategoryValues: boolean: false
 EnableProcessCapabilityValues: boolean: false
 EnableCalculatedValues: boolean: false
 EnableNotesString: boolean: false

EnableCategoryValues
Display the category (subgroup sample values) in the data tooltip.

EnableProcessCapabilityValues
Display the process capability (Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu and Ppk) statistics currently
being calculated for the chart.

EnableCalculatedValues
Display the calculated values used in the chart (Mean, range and sum for an Mean-Range chart).

EnableNotesStrings
Display the current notes string for the sample subgroup.

Example

The variable control chart below displays a tooltip with all of the enable options above set true. See an
example in the SPCMediumSimple.js JSON script file.

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true,
 "EnableJSONDataToolTip": false,
 "AlarmStateEventEnable": true

 },

293

Data Tooltip with optional display items

User-Define Data Tooltips and Annotations

Events

EnableJSONDataToolTip: boolean: false

Set EnableJSONDataToolTip true to enable user-defined tooltips. When a data point is clicked, the
JSON data tooltip tries to vector out into the host HTML file. It looks for the Javascript method
JSONChartMouseEvent with the following template:

 function JSONChartMouseEvent(s)
 {
 var jsonobj = JSON.parse(s);
 var jsonresult =
 { SPCChartMouseEventResult:
 {
 "Action": "TOOLTIP_ACTION_ANNOTATE",
 "Message": "Point #" + jsonobj.SPCChartMouseEvent.DataIndex,
 "TextBoxWidthChar": 40,

294

 "TextBoxHeightChar": 10
 }
 };
 var result=JSON.stringify(jsonresult);
 return result;
 }

It parses the JSON string passed into the function, and returns the JSON structure specifying the
resulting tool tip message, action, and dimensions. The structure of the incoming JSON string is:

 "SPCChartMouseEvent": {
 "ChartType": integer
 "DataIndex": integer

"SampleIntervalMean": double
 "SampleIntervalSigma": double

"SampleValues": [double, double, double...]
 "TimeStampLong": long
 "TimeStampString": string
 "Notes":string

The way it actually appears as a JSON string, using actual values, is:

 {
 "SPCChartMouseEvent": {

 "ChartType": 0,
 "DataIndex": 7,

"SampleIntervalMean": 22.0,
 "SampleIntervalSigma": 6,

"SampleValues": [23.1, 14.1, 25.3, 21.3, 22.4],
 "TimeStampLong": 1371831729074,
 "TimeStampString": "07/21/2013 13:11:01",
 "Notes": "This is a note"

 }
}

You can access individual fields of the record using standard java script dot notation, as demonstrated
in the JSONChartMouseEvent example above: the sample interval index of the mouse click is found in
jsonobj.SPCChartMouseEvent.DataIndex.

Example

An example is found in the SPCComplex.html example.

SPCChartMouseEvent

ChartType

The chart type of the current SPC chart.

295

DataIndex

The sample interval index of the selected point.

SampleIntervalMean

The sample mean of the current sample interval.

SampleIntervalSigma

The sample standard deviation of the current sample interval.

SampleValues

An array of the sample values of the sample interval

TimeStampLong

The time stamp of the sample interval as a long number, representing milliseconds.

TimeStampString

A string representation of the type sample of the sample interval.

Notes

A string containing any note attached to the current sample interval record.

The JSONChartMouseEvent should return a JSON structure which looks like:

SPCChartMouseEventResult
 Action: "TOOLTIP_ACTION_DIALOG",

Message: string: "",
TextBoxWidthPx: integer: 150,
TextBoxHeightPx: integer: 150,
TextBoxWidthChar: integer: 20,
TextBoxHeightChar: integer: 10

The way it actually appears as a JSON string, using actual values, as created in the
JSONChartMouseEvent above, is:

 { SPCChartMouseEventResult:
 {
 "Action": "TOOLTIP_ACTION_ANNOTATE",
 "Message": "Point #" + jsonobj.SPCChartMouseEvent.DataIndex,
 "TextBoxWidthChar": 40,

296

 "TextBoxHeightChar": 10
 }
 }

Example

An example is found in the SPCComplex.html example.

SPCChartMouseEventResult

Action

Select the action you want. You can annotate the data point with the message string using
"TOOLTIP_ACTION_ANNOTATE", or you can open a pop-up dialog box displaying the message
string using TOOLTIP_ACTION_DIALOG.

Message

The string to be displayed as either an annotation, or as a tooltip dialog box.

TextBoxWidthPx

Width of the dialog box in pixels. If you use TextBoxWidthPx and TextBoxHeightPx, do not use
TextBoxWidthChart and TextBoxHeightChart.

TextBoxHeightPx

Height of the dialog box in pixels. If you use TextBoxWidthPx and TextBoxHeightPx, do not use
TextBoxWidthChart and TextBoxHeightChart.

TextBoxWidthChar

Width of the dialog box in characters (approximate because of proportional character spacing). If you
use TextBoxWidthChar and TextBoxHeightChar, do not use TextBoxWidthPx and TextBoxHeightPx.

TextBoxHeightChar

Height of the dialog box in characters. If you use TextBoxWidthChar and TextBoxHeightChar, do not
use TextBoxWidthPx and TextBoxHeightPx.

297

15. JSNI Calls into the QCSPCChart Library

Chart Creation/Modification Functions
pushJSONChartCreate
pushJSONChartUpdate

Data Simulation Functions
pushGetSimulateDataJSON
pushSimulateDataUpdate

Display of JSON Script
pushDisplayJSONScript

Data Retrieval Functions
pushGetJSONSampleIntervalData
pushGetJSONOverallStatistics

Direct Javascript calls, from handwritten Javascript code calling internal library functions of the
application is not supported, except for a limited number of exported functions. This is because the
Javascript code generated by the GWT compiler, is highly optimized, compressed, and obfuscated, and
it also undergoes a major structural change as the OOP source code (Java) is translated into non-OOP
code (Javascript). There are ways around this using a feature of GWT call JSNI (JavaScript Native
Interface) and we utilize that feature in a few critical areas. But in general, the programmer (i.e. you),
will not be calling our Javascript library functions directly.

We call these push functions because our QCSPCChart library pushes, or adds, these functions
automatically into your base HTML file. So you can call them exactly as if they were part of the
Javascript code in your file.

The exported functions are divided into four groups: functions which create or modify a chart, data
simulation methods, display of JSON script, and functions which return a JSON structure of data to the
calling Javascript code in the HTML base file.

These routines require a medium to advanced knowledge of Javascript and JSON. You may need to
refer to a text books and on-line sources about Javascript and JSON in order to make full use of these
functions.

http://www.w3schools.com/js/ - Javascript Tutorial

http://www.json.org/ - Introducing JSON

http://www.json.org/js.html – JSON in Javascript

Chart Creation/Modification Functions

pushJSONChartCreate

This method can be used to create a new chart. Pass in a chart defining JSON script and if properly
formatted, the resulting chart will display on the web page. The initial chart can contain data; just

http://www.json.org/js.html
http://www.json.org/
http://www.w3schools.com/js/

298

include the data in the SampleData property of the defining JSON script. Or the data can be added later
by calling pushJSONChartUpdate.

The Javascript template of pushJSONChartCreate is:

pushJSONChartCreate(String jsonstring)

where jsonstring is a properly formatted JSON string.

In use, it would look like:

 function processCreateChartClick()
 {
 pushJSONChartCreate(JSON.stringify(TimeXBarR));
 }

In this case, TimeXBarR is a Javascript JSON variable. A minimal example is:

var TimeXBarR=
 {

 "SPCChart": { .

 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15

 },
.
.
.

}

Example

The JSON.stringify call converts the variable into its JSON string equivalent. You will find an example
of pushJSONChartCreate in the SPCExampleScripts.html example. It is called in the displayChart
function, where it displays the chart selected from the drop down list.

pushJSONChartUpdate

This method is very similar to the pushJSONChartCreate method.. The difference is that the
pushJSONChartUpdate function requires that a chart already be created. It supplies data, or modified
parameters, to the current chart. Using this method, you can add data to a chart one sample interval at a
time, or a block of sample intervals at a time. It should NOT include an InitChartProperties block,
because that is a chart creation block, and this function is just used to update the existing chart.

299

The Javascript template of pushJSONChartUpdate is:

pushJSONChartUpdate(String jsonstring)

where jsonstring is a properly formatted JSON string.

In use, it would look like:

 function processUpdateChartClick()
 {
 pushJSONChartUpdate(JSON.stringify(NewChartData));
 }

In this case, NewChartData is a Javascript JSON variable.

var NewChartData=
 {

 "SPCChart": { .

 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628,
 33.95771604022404,
 24.310097827061817,
 28.282642847792765,
 30.2908518818265
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214,
 34.38930645615096,
 28.0203674441636,
 33.27153359969366,
 36.8305571558275
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },
 {
 "SampleValues": [
 35.21321620109259,
 32.93940741018088,
 33.66485557976163,
 34.17314124609133,
 24.576683179863725

300

],
 "BatchCount": 2,
 "TimeStamp": 1371832629074,
 "Note": ""
 },

.

.

.
]

}
}

}

Example

The JSON.stringify call converts the variable into its JSON string equivalent. The
SPCMediumSimple.html page has an example of updating a chart using pushJSONChartUpdate.

Data Simulation Functions

pushGetSimulateDataJSON

The easiest way to debug a new chart is to use simulated data. The pushGetSimulatedDataJSON
function returns a properly formatted string of data in JSON format. So you can make a call in your
HTML Javascript code, get a JSON string of formatted data back, and then turn around and use the
JSON string in a call to our pushJSONChartUpdate method.

The format of the pushGetSimulateDataJSON function is:

String pushGetSimulateDataJSON(int count, double mean, double range)

where

count

Number of sample intervals to simulate.

mean

The desired mean of the simulated data.

range

The desired range of the simulated data.

301

The function already knows how many samples per subgroup are defined for the chart.

Below is an example of calling pushGetSimulateDataJSON, and then using the resulting JSON
formatted string in a subsequent call to pushJSONChartUpdate.

 function processClick()
 {
 var jsonstring = pushGetSimulateDataJSON(40, 35, 6);
 pushJSONChartUpdate(0, jsonstring);
 }

Note that since pushGetSimulateDataJSON returns a JSON string, it is already a string, and does not
need to be converted to a string using JSON.stringify. You can, if you want, convert the JSON string
into a Javascript JSON object using JSON.parse. Once you have the Javascript JSON object version of
the data, you can read, or modify the data under program control. Since it is a Javascript object, you do
need to call JSON.stringify before using it in the call to pushJSONChartUpdate. If you want to format
the string, you can use a version of JSON,stringify which formats the resulting JSON string.

 function processClick()
 {
 var jsonstring = pushGetSimulateDataJSON(40, 35, 6);
 var jsonobj = JSON.parse(jsonstring);

 var formattedjsonstring = JSON.stringify(jsonobj,undefined,2);

 pushJSONChartUpdate(formattedjsonstring);
 }

pushSimulateDataUpdate

This method directly updates the chart with simulated data. There are no intermediate stops to and from
a JSON formatted string, as was demonstrated in the pushGetSimulateDataJSON description.

The format of the pushSimulateDataUpdate function is:

void pushSimulateDataUpdate(int count, double mean, double range)

where

count

Number of sample intervals to simulate.

mean

The desired mean of the simulated data.

302

range

The desired range of the simulated data.

The function already knows how many samples per subgroup are defined for the chart.

Below is a simple example which has the same affect on the chart as the examples for the
pushGetSimulateDataJSON function.

 function processClick()
 {
 pushSimulateDataUpdate(40, 35, 6);
 }

pushSimulateDataUpdatePercentChange

This method directly updates the chart with simulated data. There are no intermediate stops to and from
a JSON formatted string, as was demonstrated in the pushGetSimulateDataJSON description. It
calculates the current mean and sigma of the data, and simulates new data which reflects a percentage
change from those values.

The format of the pushSimulateDataUpdate function is:

void pushSimulateDataUpdate(int count, double meanpercentchange, double
rangepercentchange)

where

count

Number of sample intervals to simulate.

meanpercentchange

The desired change in the mean of the simulated data.

rangepercentchange

The desired change in the range of the simulated data.

The function already knows how many samples per subgroup are defined for the chart.

Below is a simple example which has the same affect on the chart as the examples for the
pushGetSimulateDataJSON function.

 function processAddDataClick()
 {

pushSimulateDataUpdatePercentChange

303

 }

Example

An example is found in the SPCComplex.html example page.

Display of JSON Script

pushDisplayJSONScript

The pushDisplayJSONScript function is a useful utility. It displays a formatted JSON script in a pop-up
window in the browser.

The format of the pushDisplayJSONScript function is:

void pushSimulateDataUpdate(String jsonstring)

where:

jsonstring

A JSON formatted string to display in the popup window.

 function processJSONScriptClick()
 {
 var s = JSON.stringify(TimeXBarR,undefined,2);

 pushDisplayJSONScript(s);

 }

where TimeXBar, the chart defining JSON script, is converted to a JSON string, using JSON.stringify,
and then displayed in a pop-up window using pushDisplayJSONScript. The call to JSON.stringify,
with three parameters, is a version which formats the JSON string with indentation, making it easier to
read. In this case the indentation is set to level 2.

Example

The pushDisplayJSONScript function is used in the SPCMediumSimple and SPCExampleScripts
examples.

304

Data Retrieval Functions

pushGetJSONSampleIntervalData

Programmers always want to retrieve values not part of their original input, but calculated internally by
the software. The pushGetJSONSampleIntervalData retrieves data values associated with a given
sample interval. It returns the sample interval data in a JSON structure, which can be parsed into a
Javascript object. The format of the JSON structure is:

{
 "SPCSampleIntervalData": {
 "DataIndex": integer,
 "TimeStampLong": integer
 "TimeStampString": string,
 "NumberOfSamples": integer,
 "SampleData": double [],
 "Mean": double,
 "Minimum": double,
 "Maximum": double,
 "Range": double,
 "StandardDevation": double,
 "Median": double,
 "Variance":double,
 "Note": string
 "PrimaryChartAlarmState": integer,
 "SecondaryChartAlarmState": integer,
 "PrimaryChartAlarmMessage": string,
 "SecondaryChartAlarmMessage": string,,
 "ProcessPerformance": {
 "Cpk": double,
 "Cpm":double,
 "Ppk": double,

.

.

.
 }
 }
}

In actual use, a filled-out SPCSampleIntervalData would look like:

{
 "SPCSampleIntervalData": {
 "DataIndex": 52,
 "TimeStampLong": 1371877629074,
 "TimeStampString": "6/22/2013 01:07:09",
 "NumberOfSamples": 5,
 "SampleData": [
 37.86739857994523,
 37.38247376256557,
 33.93501030715761,
 31.009898186882122,
 38.61221167576862

305

],
 "Mean": 35.76139850246383,
 "Minimum": 31.009898186882122,
 "Maximum": 38.61221167576862,
 "Range": 7.602313488886498,
 "StandardDevation": 3.2055696125369533,
 "Median": 37.38247376256557,
 "Variance": 10.275676540820314,
 "Note": "",
 "PrimaryChartAlarmState": 2,
 "SecondaryChartAlarmState": 2,
 "PrimaryChartAlarmMessage": "6/22/2013 01:07:09 \nPrimary chart: Basic Rule #2
violation 1 of 1 greater than 3-sigma=35.090\nCurrent Value=35.761",
 "SecondaryChartAlarmMessage": "",
 "ProcessPerformance": {
 "Cpk": 0.2070010871064765,
 "Cpm": 0.36491231082172015,
 "Ppk": 0.14704411677834697
 }
 }
}

The process performance indices will include all process performance indices added to the chart in the
charts ProcessCapabilitySetup section of the chart SPCChart.TableSetup.ProcessCapabilitySetup
block, as seen below.

 "ProcessCapabilitySetup": {
 "LSLValue": 27,
 "USLValue": 35,
 "EnableCPK": true,
 "EnableCPM": true,
 "EnablePPK": true
 }

Once you retrieve the sample interval data, you can turn it into a Javascript object by calling
JSON.parse. From there, you can access individual fields as you would any Javascript record structure.
In the example below, the PrimaryChartAlarmMessage is retrieved using the expression
jsonobj.SPCSampleIntervalData.PrimaryChartAlarmMessage.

 function processJSONSampleIntervalDataClick()
 {
 var s = pushGetJSONSampleIntervalData(52);

 var jsonobj = JSON.parse(s);

 var s2 = jsonobj.SPCSampleIntervalData.PrimaryChartAlarmMessage;

 alert(s2.toString());

 }

306

Example

The pushGetJSONSampleIntervalData function is used in the SPCMediumComplex example.

pushGetJSONOverallStatistics

The pushGetJSONOverallStatistics returns statistics calculated using all of the data, rather than a
single sample interval of data. It returns the overall statistics data in a JSON structure, which can be
parsed into a Javascript object. The format of the JSON structure is:

{
 "SPCOverallStatistics": {
 "ChartType":string,
 "NumberOfCharts": int,
 "NumberOfSampleIntervals":int,
 "PrimaryChart": {
 "Mean": double,
 "Minimum": double,
 "Maximum": double,
 "Range": double,
 "StandardDevation": double,
 "Median": double,
 "Variance": double
 },
 "SecondaryChart": {
 "Mean": double,
 "Minimum": double,
 "Maximum": double,
 "Range": double,
 "StandardDevation": double,
 "Median": double,
 "Variance": double
 },
 "ProcessPerformance": {
 "Cpk": double,
 "Cpm":double,
 "Ppk": double,

.

.

.

 }
 }
}

In actual use, a filled-out SPCOverallStatistics would look like:

{
 "SPCOverallStatistics": {
 "ChartType": "MEAN_RANGE_CHART",
 "NumberOfCharts": 2,
 "NumberOfSampleIntervals": 60,
 "PrimaryChart": {

307

 "Mean": 33.39261928512446,
 "Minimum": 25.482478927553114,
 "Maximum": 37.646197127628135,
 "Range": 12.16371820007502,
 "StandardDevation": 2.9035180903754023,
 "Median": 34.464686076700794,
 "Variance": 8.430417301137222
 },
 "SecondaryChart": {
 "Mean": 7.277134394453275,
 "Minimum": 3.801051543907956,
 "Maximum": 11.593146884947828,
 "Range": 7.792095341039872,
 "StandardDevation": 2.000220825016576,
 "Median": 6.885281353045533,
 "Variance": 4.0008833488299915
 },
 "ProcessPerformance": {
 "Cpk": 0.17125640122162375,
 "Cpm": 0.3385273201944916,
 "Ppk": 0.13191522282471005
 }
 }
}

The process performance indices will include all process performance indices added to the chart in the
charts ProcessCapabilitySetup section of the chart SPCChart.TableSetup.ProcessCapabilitySetup
block, as seen below.

 "ProcessCapabilitySetup": {
 "LSLValue": 27,
 "USLValue": 35,
 "EnableCPK": true,
 "EnableCPM": true,
 "EnablePPK": true
 }

Example

The pushGetJSONOverallStatistics function is used in the SPCMediumSimple and
SPCMediumComplex examples.

308

16. CSS Style Sheets

Background Color
Default Font Family
Chart Position

A limited number of style sheet properties are supported in the software. These include the background
color of the charts, the default font-family, and margin properties.

You will find a QCSPCChartGWT.css file in the root of the war folder. Inside are several style
definitions which can be used to define a few styles which are used by the software.

Background Color

Normally, the background colors used for the charts are set in the charts JSON file, using the
GraphBackground and PlotBackground properties.

"PrimaryChartSetup": {

"GraphBackground": {
 "FillColor": "GREEN",

 "BackgroundMode": "SIMPLECOLORMODE"
},

"PlotBackground": {
 "FillColor": "BROWN",
 "BackgroundMode": "SIMPLECOLORMODE"

}
}

"SecondaryChartSetup": {
"PlotBackground": {

 "FillColor": "BROWN",
 "BackgroundMode": "SIMPLECOLORMODE"

}
}

There is no need to process the GraphBackground property in the SecondaryChartSetup, because the
GraphBackground of the PrimaryChartSetup also applies to the SecondaryChartSetup.

The GraphBackground and PlotBackground have default values of "WHITE", and that color is used for
the charts background if no value is explicitly assigned.

If you prefer, you can use the background color of the parent HTML page. You do this by disabling the
GraphBackground and PlotBackground objects using associated Enable property.

309

"PrimaryChartSetup": {
 "GraphBackground": {
 "Enable": false
 },
 "PlotBackground": {
 "Enable": false
 }

},
"SecondaryChartSetup": {

"PlotBackground": {
"Enable": false

}
},

If you do this for a chart, and since the HTML5 Canvas object we use for drawing the charts has a
transparent background, the HTML5 page will show through. Therefore the background color of the
HTML parent page will become the background for the SPC charts.

One way to specify the background color for the HTML page is to define a body css style tag in the
QCSPCChartGWT.css file, and set the background-color property. If you want the color to override
any other styles properties for the page, add the !important flag as seen below.

body {background-color:#5a84c5 !important;}

You will find this line commented out in the QCSPCChartGWT.css file.

Default Font Family

The default font family can be set using the font-family css property of the .mainCanvas style, located
in the QCSPCChartGWT.css file.

.mainCanvas {

 font-family:"Times New Roman", Times, serif;

}

This property sets the default font for the charts and table of the SPC charts. If you do not use the JSON
properties for setting default properties, then the .mainCanvas.font-family property will be in affect.
However, you can override the .mainCanvas.font-family property using JSON properties we also
provide.

 "StaticProperties": {

 "DefaultFontName": "Arial, sans-serif",

310

 "DefaultTableFont": {
 "Name": "'Comic Sans MS', cursive, sans-serif",
 "Size": 12,
 "Style": "Plain"
 }

 },

In this case, even though the .mainCanvas.font-family property is set to "Times New Roman" in the
QCSPCChartGWT.css file, it is overridden by the DefaultFontName, and DefaultTableFont properties
of the chart defining JSON script.

Chart Position

You can offset the postion of the chart within the HTML page using margin propeties in the
.verticalPanel style located in the QCSPCChartGWT.css file. The HTML5 canvas we use for drawing
is placed in a VerticalPanel object. The VerticalPanel is in turned place in the Iframe of the HTML
page used by GWT.

The default margin property value is set to auto.

.verticalPanel {
 width: 100%;
 height: 100%;
 margin: auto;
}

This produces a chart something like this:

311

This sizes the vertical panel to SPC Chart canvas object placed inside. If you want a custom margin
around the SPC Chart, specifiy individual margin values.

.verticalPanel {
 width: 100%;
 height: 100%;

 margin-top:100px;
 margin-left:50px;

}

312

17. Frequency Histogram

Frequency Histogram Chart
Creating an Independent (not part of a SPC chart) Frequency Histogram
Supplying Data to A Frequency Histogram Chart
Changing Default Characteristics of the Chart
Adding Control Lines and Normal Curve to Histogram Plot
JSON Structure Summary

Frequency Histogram Chart
An SPC control chart will allow you to track the trend of critical variables in a production environment.
It is important that the production engineer understand whether or not changes or variation in the
critical variables are natural variations due to the tolerances inherent to the production machinery, or
whether or not the variations are due to some systemic, assignable cause that needs to be addressed. If
the changes in critical variables are due to the natural variations, then a frequency histogram of the
variations will usually follow one of the common continuous (normal, exponential, gamma, Weibull) or
discrete (binomial, Poisson, hypergeometric) distributions. It is the job of the SPC engineer to know
what distribution best models his process. Periodically plotting of the variation of critical variables will
give SPC engineer important information about the current state of the process. A typical frequency
histogram looks like:

Frequency Histogram Chart

313

Viewing frequency histograms of both the variation in the primary variable (Mean, Median, count, or
actual value), and the secondary variable (Range, Sigma or Moving Range) side-by-side with the SPC
control chart makes it even easier to find out whether the variations are the result of natural variations
or the result of some systemic change in the process.

XBar-R Chart with Integral Frequency Histograms

Creating an Independent (not part of a SPC chart) Frequency Histogram

The FrequencyHistogramChart class creates a standalone frequency histogram. It is a simple
template where you need only supply data and set a few properties to create a proper frequency
histogram. The example below extracted from the FrequencyHistogram.FrequencyHistogramPlot
example program.

 "FrequencyHistogram": {
"ChartSetup": {

"HistogramPlot": {
"LineColor": "BLACK",
"LineWidth": 1,
"FillColor": "GREEN"

314

 },
"ControlLines": [

 {
"LimitValue": 21,
"LineColor": "BLUE",
"LineWidth": 3

 },
 {
 "LimitValue": 58,
 "LineColor": "RED",
 "LineWidth": 3

}
],
"NormalCurveLine": {

"Enable": true,
 "LineColor": "YELLOW",
 "LineWidth": 3
 }

},
 "FrequencyHistogramData": {

"SampleValues": [
 32, 44, 44, 42, 57,
 26, 51, 23, 33, 27,
 42, 46, 43, 45, 44,
 53, 37, 25, 38, 44,
 36, 40, 36, 48, 56,

47, 40, 58, 45, 38,
 32, 39, 43, 31, 45,
 41, 37, 31, 39, 33,

20, 50, 33, 50, 51,
 28, 51, 40, 52, 43

],
 "FrequencyBins": [

 19.5, 24.5, 29.5, 34.5, 39.5,
 44.5, 49.5, 54.5, 59.5

]
 },
"Methods": {
 "RebuildUsingCurrentData": true
 }
 }

Supplying Data to A Frequency Histogram Chart

All you have to do is supply the raw data, and the values of the frequency bins for which you want to
accumulate values. The FrequencyHistogramChart class auto-scale a coordinate system, creates the
proper x- and y-axes, and draws the resulting frequency histogram as a bar plot.

FrequencyHistogramData

315

FrequencyHistogramData
 SampleValues [double, double, ...]
 FrequencyBins [double, double, ...]

Initializes the histogram frequency bin limits, and the data values for the histogram.

]

Parameters

FrequencyBins
The frequency limits of the histogram bins.

SampleValues
An array the values that are counted with respect to the frequency bins.

The image below uses the following data:

"SampleValues": [
 32, 44, 44, 42, 57,
 26, 51, 23, 33, 27,
 42, 46, 43, 45, 44,
 53, 37, 25, 38, 44,
 36, 40, 36, 48, 56,

47, 40, 58, 45, 38,
 32, 39, 43, 31, 45,
 41, 37, 31, 39, 33,

20, 50, 33, 50, 51,
 28, 51, 40, 52, 43

],
 "FrequencyBins": [

 19.5, 24.5, 29.5, 34.5, 39.5,
 44.5, 49.5, 54.5, 59.5

]

316

317

Changing Default Characteristics of the Chart

A FrequencyHistogramChartobject has one distinct graph with its own set of properties. Once the
graph is initialized (using the InitFrequencyHistogram, or one of the FrequencyHistogramChart
constructors), you can modify the default characteristics of each graph using these properties. For
example, you can change the color of y-axis, and the y-axis labels using the LineColor property of
those objects.

"ChartSetup": {
"HistogramPlot": {

"LineColor": "BLACK",
"LineWidth": 1,
"FillColor": "GREEN"

 },
 "YAxis": {

"LineColor": "GREEN",
"LineWidth": 3

}
"YAxisLabels": {

 "TextColor" = "DARKMAGENTA"
}

318

}

Adding Control Lines and Normal Curve to Histogram Plot

You can add control limit lines, and a normal distribution curve to the frequency histogram. The
control limit lines will be parallel to the frequency axis. A normal distribution curve can be overlaid on
top of the histogram data. The parameters are selected to give the normal distribution curve the same
mean, standard deviation and area as the underlying histogram data. If the underlying data is normal,
then there should be a relatively close fit between the normal curve and the underlying frequency data.

Histogram Control Limit Lines and Normal Curve fit

The block in red below shows how to add control lines to the Frequency Histogram. The block in green
shows how to add a normal curvefit.

{

319

 "FrequencyHistogram": {
 "ChartSetup": {
 "HistogramPlot": {
 "LineColor": "BLACK",
 "LineWidth": 1,
 "FillColor": "GREEN"
 },
 "ControlLines": [
 {
 "LimitValue": 21,
 "LineColor": "BLUE",
 "LineWidth": 3
 },
 {
 "LimitValue": 58,
 "LineColor": "RED",
 "LineWidth": 3
 }
],
 "NormalCurveLine": {
 "Enable": true,
 "LineColor": "YELLOW",
 "LineWidth": 3
 }
 },
 "FrequencyHistogramData": {
 "SampleValues": [
 32, 44, 44, 42, 57,
 26, 51, 23, 33, 27,
 42, 46, 43, 45, 44,
 53, 37, 25, 38, 44,
 36, 40, 36, 48, 56,
 47, 40, 58, 45, 38,
 32, 39, 43, 31, 45,
 41, 37, 31, 39, 33,
 20, 50, 33, 50, 51,
 28, 51, 40, 52, 43
],
 "FrequencyBins": [
 19.5, 24.5, 29.5, 34.5, 39.5, 44.5, 49.5, 54.5, 59.5

]
 },
 "Methods": {
 "RebuildAndDraw": true
 }
 }
}

JSON Structure Summary

FrequencyHistogram

320

ChartSetup
 ChartPositioning

X1: double
Y1: double
X2: double
Y2: double

 MainTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 CoordinateSystem
 MinXScale: double
 MinYScale: double
 MaxXScale: double
 MaxYScale: double

 XAxis
 LineColor: Color String constant

 LineWidth: double
 XAxisLabels

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double
 Format: SPC String constant
 OverlapLabelMode: SPC String constant
 Decimal: integer
 AxisLabelsStrings: [String, String, ...]

 XAxisTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 YAxis
 LineColor: Color String constant

 LineWidth: double
 YAxisLabels

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double
 Format: SPC String constant
 OverlapLabelMode: SPC String constant
 Decimal: integer
 AxisLabelsStrings: [String, String, ...]

 YAxisTitle
 Font

321

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 HistogramPlot
 LineColor: Color String constant
 LineWidth: double
 BarColor: Color String constant
 GraphBackground

 FillColor: Color String constant
 BackgroundMode: SPC String constant
 GradientStartColor: Color String constant
 GradientStopColor: Color String constant

 PlotBackground
 FillColor: Color String constant
 BackgroundMode: SPC String constant
 GradientStartColor: Color String constant
 GradientStopColor: Color String constant

LimitValueDecs: integer
 ControlLines

[{
LimitValue: double
LineColor: Color String constant
LineWidth: double

 },
{

LimitValue: double
LineColor: Color String constant
LineWidth: double

 }, ...
]
NormalCurveLine
{

Enable: boolean
LineColor: Color String constant
LineWidth: double

 }
FrequencyHistogramData

 SampleValues [double, double, ...]
 FrequencyBins [double, double, ...]

Methods
RebuildAndDraw

322

18. Pareto Diagrams

Pareto Diagrams
Creating a Pareto Diagram
Supplying a Pareto Chart with Data
Changing Default Characteristics of the Chart
JSON Structure Summary

Pareto Diagrams
The Pareto diagram is special type of bar graph combined with a line plot, plotted in a chart that uses
two different y-axis scales. The bar graph scale is a frequency scale that measures the number of times
a specific problem has occurred. The line plot scale is a cumulative percentage scale.

Pareto Chart

The chart is easy to interpret. The tallest bar, the left-most one in a Pareto diagram, is the problem that
has the most frequent occurrence. The shortest bar, the right-most one, is the problem that has the least
frequent occurrence. Time spend on fixing the biggest problem will have the greatest affect on the

323

overall problem rate. This is a simplistic view of actual Pareto analysis, which would usually take into
account the cost effectiveness of fixing a specific problem. Never less, it is powerful communication
tool that the SPC engineer can use in trying to identify and solve production problems.

Creating a Pareto Diagram

The ParetoChart class creates a standalone Pareto Diagram chart. It is a simple template where you
need only supply data and set a few properties to create a proper frequency histogram. The example
below is from the ParetoPlot file of the ParetoDiagram example program.

 "ParetoChart": {
 "ChartSetup": {
 "BarPlot": {
 "LineColor": "BLACK",
 "LineWidth": 1,
 "FillColor": "GREEN"
 },
 "LineMarkerPlot": {
 "LineColor": "RED",
 "SymbolColor": "VIOLET"
 }
 },
 "ParetoChartData": {
 "CategoryItems": [
 5,
 7,
 2,
 11,
 27,
 8
],
 "CategoryStrings": [
 "Torn",
 "Not Enough\nComponent",
 "Others",
 "PoorMix",
 "Holes",
 "Stains"
]
 },
 "Methods": {
 "RebuildUsingCurrentData": true
 }
 }
}

324

Supplying a Pareto Chart with Data
All you have to do is supply the raw data, and the values of the frequency bins for which you want to
accumulate values. The ParetoChart class auto-scale a coordinate system, creates the proper x- and y-
axes, and draws the resulting probability plot as a scatter plot.

ParetoChartData

ParetoChartData
 CategoryItems [double, ...]
 CategoryStrings [String, ...]

Initializes the x- and y-values of the data points plotted in the probability plot.

CategoryItems
The values for each category in the Pareto chart.

CategoryStrings
The strings identifying each category in the Pareto chart.

Example
 "ParetoChartData": {
 "CategoryItems": [
 5,
 7,
 2,
 11,
 27,
 8
],
 "CategoryStrings": [
 "Torn",
 "Not Enough\nComponent",
 "Others",
 "PoorMix",
 "Holes",
 "Stains"
]
 },

325

Changing Default Characteristics of the Chart

You can modify the default characteristics of each graph using these properties. For example, you can
change the color of bar plot, and the LineMarkerPlot using the LineColor property of those objects.

 "ChartSetup": {
 "BarPlot": {
 "LineColor": "BLACK",
 "LineWidth": 1,
 "FillColor": "GREEN"
 },
 "LineMarkerPlot": {
 "LineColor": "RED",
 "SymbolColor": "VIOLET"
 }
 },

JSON Structure Summary

ParetoChart
ChartSetup

 ChartPositioning
X1: double

326

Y1: double
X2: double
Y2: double

 MainTitle
 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 CoordinateSystem1
 MinXScale: double
 MinYScale: double
 MaxXScale: double
 MaxYScale: double

 CoordinateSystem2
 MinXScale: double
 MinYScale: double
 MaxXScale: double
 MaxYScale: double

 XAxis
 LineColor: Color String constant

 LineWidth: double
XAxisLabels

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double
 Format: SPC String constant
 OverlapLabelMode: SPC String constant
 Decimal: integer
 AxisLabelsStrings: [String, String, ..]

 XAxisTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 YAxisLeft
LineColor: Color String constant

 LineWidth: double
 YAxisLeftLabels

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double
 Format: SPC String constant
 OverlapLabelMode: SPC String constant
 Decimal: integer
 AxisLabelsStrings: [String, String, ..]

327

 YAxisLeftTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 YAxisRight
LineColor: Color String constant

 LineWidth: double
 YAxisRightLabels

 Font
 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Rotation: double
 Format: SPC String constant
 OverlapLabelModeconstant (String)
 Decimal: integer
 AxisLabelsStrings: [String, String, ...]

 YAxisRightTitle
 Font

 Name: String
 Size: double
 Style: String

 TextColor: Color String constant
 Text: String

 BarPlot
 LineColor: Color String constant
 LineWidth: double
 BarColor: Color String constant
 LineMarkerPlot
 LineColor: Color String constant
 LineWidth: double
 SymbolFillColor: Color String constant
 SymbolLineColor: Color String constant
 SymbolColor: Color String constant
 SymbolSize: double
 GraphBackground

 FillColor: Color String constant
 BackgroundMode: SPC String constant
 GradientStartColor: Color String constant
 GradientStopColor: Color String constant

 PlotBackground
 FillColor: Color String constant
 BackgroundMode: SPC String constant
 GradientStartColor: Color String constant
 GradientStopColor: Color String constant
ParetoChartData

 CategoryItems [double, ...]
 CategoryStrings [String, ...]

Methods
RebuildAndDraw

19. Regionalization

StaticProperties
SPCChartStrings
 .
 .
 .

TimeValueRowHeader: String: "TIME"
AlarmStatusValueRowHeader: String: "ALARM"
NumberSamplesValueRowHeader: String: "NO. INSP."
TitleHeader: String: "Title: "
PartNumberHeader: String: "Part No.: "
ChartNumberHeader: String: "Chart No.: "
PartNameHeader: String: "Part Name: "
OperationHeader: String: "Operation: "
OperatorHeader: String: "Operator: "

 .
 .
 .

Regionalization is done through initialization of static strings within the library. This is done using the
StaticProperties.SPCChartStrings property block. There are 125 string constants (more or less) used in
the software. Their values are all static. You can change any, or all of the string constants to match your
requirements.

A list of the SPCChartStrings appears at the end of this chapter.

Change the strings using the following JSON example:

"SPCChartStrings": {
 "DefaultMean": "Average",
 "TimeValueRowHeader": "Time"
}

List as many of the 125 strings as you need to change. Make sure to surround both the string property
name, "DefaultMean" for example, and the string value, "Average" with quotes.

Example

The SPCExampleScripts.js TimeXBarR example has an example of how to use the QCSPCChartString
property block.

 329

Full List of the Static SPCChartStrings Objects

SPCChartStrings

start "start" - used to mark the beginning of the array

 ChartFont "sans-serif" - default font string

 HighAlarmStatus "H" - alarm status line - High short string

 LowAlarmStatus "L" - alarm status line - Low short string

 ShortStringNo "N" - No short string

 ShortStringYes "Y" - Yes short string

 DataLogUserString "" - default data log user string

 SPCControlChartDataTitle "Variable Control Chart (X-Bar & R)" - Default chart
title

 ZeroEqualsZero "zero" - table zero string

 TimeValueRowHeader "TIME" - TIME row header

 AlarmStatusValueRowHeader "ALARM" - ALARM row header

 NumberSamplesValueRowHeader "NO. INSP." - NO. INSP. row header

 TitleHeader "Title: " - Title field caption

 PartNumberHeader "Part No.: " - Part number field caption

 ChartNumberHeader "Chart No.: " - Chart number field caption

 PartNameHeader "Part Name: " - Part name field caption

 OperationHeader "Operation:" - Operation field caption

 OperatorHeader "Operator:" - Operator field caption

 MachineHeader "Machine: " - Machine field caption

 DateHeader "Date: " - Date field caption

 SpecificationLimitsHeader "Spec. Limits: " - Spec limits field caption

 GaugeHeader "Gauge: " - Chart number field caption

 UnitOfMeasureHeader "Units: " - Chart number field caption

 ZeroEqualsHeader "Zero Equals: " - Chart number field caption

 DefaultMean "MEAN" - MEAN Calculated value row header

 DefaultMedian "MEDIAN" - MEDIAN Calculated value row header

 DefaultRange "RANGE" - RANGE Calculated value row header

 DefaultVariance "VARIANCE" - VARIANCE Calculated value row header

 DefaultSigma "SIGMA" - SIGMA Calculated value row header

 DefaultSum "SUM" - SUM Calculated value row header

330

 DefaultSampleValue "SAMPLE VALUE" - SAMPLE VALUE alculated value row
header

 DefaultAbsRange "ABS(RANGE)" - ABS(RANGE) Calculated value row
header

 DefaultMovingAverage "MA" - Moving Average

 DefaultCusumCPlus "C+" - CuSum Plus string

 DefaultCusumCMinus "C-" - CuSum Minus string

 DefaultEWMA "EWMA" - EWMA string

 DefaultPercentDefective "% DEF." - Percent Defective

 DefaultFractionDefective "FRACT. DEF." - Fraction Defective

 DefaultNumberDefective "NO. DEF." - Number Defective

 DefaultNumberDefects "NO. DEF." - Number Defects

 DefaultNumberDefectsPerUnit "NO. DEF./UNIT" - Number Defects per Unit

 DefaultNumberDefectsPerMillion "DPMO" - Number Defects per Million

 DefaultPBar "PBAR" - Target label for Attribute charts

 DefaultAttributeLCL "LCLP" - Low limit label for Attribute charts

 DefaultAttributeUCL "UCLP" - High limit label for Attribute charts

 DefaultAbsMovingRange "MR" - Moving Range Calculated value row header

 DefaultAbsMovingSigma "MS" - Moving Sigam Calculated value row header

 DefaultX "X" - Default string used to label centerline value
of I-R chart.

 DefaultXBar "XBAR" - Default string used to label centerline
value for XBar chart

 DefaultRBar "RBAR" - Default string used to label centerline
value for Range chart

 DefaultTarget "Target" - Default string used for target

 DefaultLowControlLimit "LCL" - Default string used to label low control
limit line

 DefaultLowAlarmMessage "Low Alarm" - Default string used for low alarm
limit message

 DefaultUpperControlLimit "UCL", - Default string used to label high control
limit line

 DefaultHighAlarmMessage "High Alarm" - Default string used for high alarm
limit message

 DefaultSampleRowHeaderPrefix "Sample #" - Row header for Sample # rows

 DefaultDefectRowHeaderPrefix "Defect #" - Row header for Defect # rows

 BatchColumnHead "Batch #" - Default string used as the batch number
column head in the log file.

 TimeStampColumn "Time Stamp" - Default string used as the time stamp
column head in the log file.

 SampleValueColumn "Sample #" - Default string used as the sample value

 331

column head in the log file.

 NotesColumn "Notes" - Default string used as the notes value
column head in the log file.

 DefaultDateFormat "M/dd/yyyy" - Default date format used by the
software.

 DefaultTimeStampFormat "M/dd/yyyy HH:mm:ss" - Default full date/time format
used by the software.

 DefaultDataLogFilenameRoot "SPCDataLog" - Root string used for auto-naming of
log data file.

 dataLogFilename "SPCDataLog" - Datalog Default file name, usually
over-ridden when data log opened.

 FrequencyHistogramXAxisTitle "Measurements" - Frequency Histogram Default x-axis
title.

 FrequencyHistogramYAxisTitle "Frequency" - Frequency Histogram default y-axis
title.

 FrequencyHistogramMainTitle "Frequency Histogram" - Frequency Histogram default
main title.

 ParetoChartXAxisTitle "Defect Category" - Pareto chart x-axis title

 ParetoChartYAxis1Title "Frequency" - Pareto chart left y-axis title

 ParetoChartYAxis2Title "Cumulative %" - Pareto chart right y-axis title

 ParetoChartMainTitle "Pareto Diagram" - Pareto chart main title

 ProbabilityChartXAxisTitle "Frequency Bin" - Probability chart x-axis title

 ProbabilityChartYAxisTitle "% Population Under" - Probability chart y-axis
title

 ProbabilityChartMainTitle "Normal Probability Plot" - Probability chart main
title

 Basic "Basic",

 Weco "WECO" - WECO rules string

 Weco wsupp "WECO+SUPPLEMENTAL" - WECO rules string

 Nelson "Nelson " - Nelson rules string

 Aiag "AIAG" - AIAG rules string

 Juran "Juran " - Juran rules string

 Hughes "Hughes " - Hughes rules string

 Gitlow "Gitlow " - Gitlow rules string

 Duncan "Duncan " - Duncan rules string

 Westgard "Westgard" - Westgard rules string

 Primarychart "Primary chart" - Used in alarm messages to specify
the Primary Chart variable chart is in alarm

 Secondarychart "Secondary chart" - Used in alarm messages to
specify the Secondary Chart variable chart is in alarm

 Greaterthan "greater than" - Used in alarm messages to specify

332

that a greater than alarm limit has been violated

 Lessthan "less than" - Used in alarm messages to specify that
a less than alarm limit has been violated

 Above "above" - Used in alarm messages to specify that
values above a limit

 Below "below" - Used in alarm messages to specify that
values below a limit

 Increasing "increasing" - Used in alarm messages to specify
that values are increasing

 Decreasing "decreasing" - Used in alarm messages to specify
that values are decreasing

 Trending "trending" - Used in alarm messages to specify that
values are trending

 Within "within" - Used in alarm messages to specify that
values are within certain limits

 Outside "outside" - Used in alarm messages to specify that
values are outside certain limits

 Alternating "alternating" - Used in alarm messages to specify
that values are alternating about a limit value

 Centerline "center line" - Used in alarm messages to specify
the center line of the chart

 R2s "R2s" - Used in alarm messages to specify Westgard
Rule R2s #9

 SigmaShort "S" - Used in alarm messages as sigma short string

 BbeyondAlarmStatus "B" - alarm status line - beyond short string

 TrendingAlarmStatus "T" - alarm status line - trending short string

 StratificationAlarmStatus "S" - alarm status line - stratification short
string

 OscillationAlarmStatus "O" - alarm status line - oscillation short string

 R4sAlarmStatus "R" - alarm status line - R4s short string

 Rule "Rule" - used in alarm messages for word "Rule"

 Violation "violation" - used in alarm messages for word
"violation"

 Sigma "sigma" - used in alarm messages for word "sigma"

 Target "Target" - used in alarm messages for word "Target"

 Ucl "UCL" - used in alarm messages for to designate
Upper Control Limit

 Lcl "LCL" - used in alarm messages for to designate
Lower Control Limit

 DefaultCp "Cp "

 DefaultCpl "Cpl"

 DefaultCpu "Cpu"

 333

 DefaultCpk "Cpk"

 DefaultCpm "Cpm"

 DefaultPp "Pp"

 DefaultPl "Pl"

 DefaultPu "Pu"

 DefaultPpk "Ppk"

 Canceltext "Cancel" - used for buttons in dialogs that have
cancel button

 Alarmstatusdialogtitle "Alarm Status" - used as the title for the alarm
status dialog box

 end "end" - used to mark the end of the array

20. Using SPC Control Chart Tools for Javascript to Create Web
Applications

Deployment to a an actual web site
Deployment to a computer that is not a web server
Editing and Debugging using Visual Studio
Example Applications
JSONLint.com

Deployment to an actual web site
It is very simple to deploy an application to a web site. Unzip the distribution zip file, JSSPCDEV1.zip,
to your hard drive. You will end up with the directory structure below.

Drive:

Quinn-Curtis\ - Root directory

GWTJavascript\ - Quinn-Curtis GWT / Javascript folder

Docs\ - documentation directory

 QCSPCChartGWTDoc.pdf – User guide

QCSPCChartGWTWar\ - Contains the

qcspcchartgwt\ – this folder contains the compiled, chached, Javascript libraries for
QCSPCChartGWT. There are at least six different version of the
libraries optimized for the HTML5 support in the major browsers
(IE, Firefox, Chrome, and Safari).

QCSPCChartGWT.css – a css style sheet controlling some of the default
characteristics of the chart

EXAMPLE PROGRAMS and SCRIPTS

SPCSimple.html
ChartdefSimple.js
SPCMediumSimple.html
ChartdefMediumSimple.js
MediumSimpleDataUpdate.js

 335

SPCComplex.html
ChartdefComplex.js
SPCExampleScripts.html
ChartdefExampleScripts.js
QCSPCSkeleton.html
ChartdefUserDefined.js

Copy the folder QCSPCChartGWTWar to the appropriate folder of your web site, either the
development web site, or the deployment web site. It contains the QCSPCChartGWT folder, which
contains the compiled, chached, Javascript libraries for QCSPCChartGWT. There are at least six
different version of the libraries optimized for the HTML5 support in the major browsers (IE, Firefox,
Chrome, and Safari).

Deployment to a computer that is not a web server
You are able to deploy the software to a computer which is not setup as a web server. If you have Visual
Studio (2010, 2012) running under Windows 7, installed on a desktop machine, you can deploy the
software to that environment. Just unzip the distribution zip file to a local drive on your desktop. Load
Visual Studio and select File | Open |Website and point to the QCSPCChartGWTWar folder. You will
see the list of HTML and JS files in the Solution Explorer.

Visual Studio 2012 editing a HTML file

336

Editing and Debugging using Visual Studio

You can edit the raw text of the HTML and JS files using the Visual Studio editor. If you want to
display the HTML file in the Visual Studio local server, load it into the editor, and select Main Menu |
DEBUG | Start without Debugging. User Internet Explorer as the browser. Firefox seem to have some
Canvas clipping issues when use as the host browser for Visual Studio. You can also debug the HTML
file using Visual Studio: Select Main Menu | DEBUG | Start Debugging. It will stop at any Javascript
breakpoints you set and allow you to step through the Javascript code.

Visual Studio 2012 debugging a HTML file

The Visual Studio 2012 debugger will also help you debug the JSON script files, the ones ending in *.js
in our examples), by identifying syntax errors in the scripts. In the JSON fragment below, a comma has
been dropped from the TimeXBarR definition in the chartDefSimple.js file, and the line highlighted in
RED:

var TimeXBarR=
 {

 "StaticProperties": {
 "Canvas": {
 "Width": 800,
 "Height": 550
 }
 },
 "SPCChart": {

 337

 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART"
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },

Attempts to run the SPCSimple.html file will result in a Visual Studio JavaScript critical error.

We also strongly encourage that you check your JSON scripts using JSONLint, found at
http:// jsonlint .com/ , described in the following Example Applications section.

Because the use of Firefox launched from Visual Studio seems to have some Canvas clipping issues,
testing of the different browsers will need to occur with the software installed on an actual web site.

Example Applications
The QCSPCChartGWTWar folder also contains several HTML files, representing the example web
pages we created demonstrating the different chart types and options. For each HTML file, there is one

http://jsonlint.com/
http://jsonlint.com/
http://jsonlint.com/

338

or more *.js Javascript include file, which contains one or more chart defining JSON scripts for the
associated HTML page. These include:
SPCSimple.html and an include file containing a chart defining JSON script,
ChartdefSimple.js.

SPCMediumSimple.html and an include file containing a chart defining JSON script,
ChartdefMediumSimple.js, and another include file containing update data,
MediumSimpleDataUpdate.js.

SPCComplex.html and an include file containing a chart defining JSON script, ChartdefComplex.js.

SPCExampleScripts.html – and an include file containing a chart defining JSON script,
ChartdefExampleScripts.js.

If you plan to run the demos, leave these files in place. If you have created your own HTML file, and
associated include files, you can delete all of these in your deployment. They are just examples, they
have no function in support of the libraries found in the SPC folder.

The QCSPCChartGWT libraries were developed using the Eclipse IDE. The underlying source code of
the libraries is Java. The QCSPCChartGWT libraries make use of libraries supplied by Google with
their GWT compiler. The end result of the GWT compilation process results in 100% Javascript code,
with no Java dependence. You do NOT need Eclipse, a Java Runtime, or any .Net (2.0, 3.0, 4.0 or 4.5)
library installed on the target server. You only need the files in the QCSPCChartGWTWar folder. And
our example HTML files do not need to be included either. Only the one or more HTML files you create
for your own web application.

Since all of the code in the library is client-side Javascript, nothing special needs to be done on the
server regarding permissions. The client-side browser will definitely need to be setup to allow execution
of Javascript. Below is a description of how to do that for the most common browsers.

Internet Explorer - select the browser Tools | Internet Options | Security | Custom Level | Scripting |
Active Scripting | Enable.

Firefox (Mozilla) - Javascript is on by default.

Chrome - menu icon on the browser toolbar | Settings | Show advanced settings | Content Settings
in Privacy section | Allow all sites to run JavaScript in the JavaScript section.

Safari - To enable or disable JavaScript, tap Advanced and turn JavaScript on or off. JavaScript lets web
programmers control elements of the page. For example, a page that uses JavaScript might display the
current date and time or cause a linked page to appear in a new pop-up page.

Once you have the QCSPCChartGWTWar folder copied to the www directory of your web site, you
should be able to display a web page by pointing your browser to one of the HTML files within. If you
are running our examples, you should be able to point to the
[yourwebsite].QCSPCChartGWTWar/SPCSimple.html page and display a basic X-Bar R chart. On our
web site, the web page is found at:

 339

http://quinn-curtis.com/QCSPCChart GWT War/SPCSimple.html

The other examples are accessed using a similar URL.

http://quinn-curtis.com/QCSPCChart GWT War/SPCMediumSimple.html

http://quinn-curtis.com/QCSPCChart GWT War/SPCComplex.html

http://quinn-curtis.com/QCSPCChart GWT War/SPCExampleScripts.html

Inside the QCSPCChartSimple.html example, you will find the following HTML and Javascript code.
The other example HTML pages look pretty much the same, with more Javascript code to control the
HTML elements found on the page

<!doctype html>
<!-- The DOCTYPE declaration above will set the -->
<!-- browser's rendering engine into -->
<!-- "Standards Mode". Replacing this declaration -->
<!-- with a "Quirks Mode" doctype is not supported. -->

<html>
 <head>

 <meta http-equiv="content-type" content="text/html; charset=UTF-8">

 <!-- -->
 <!-- Consider inlining CSS to reduce the number of requested files -->
 <!-- -->
 <link type="text/css" rel="stylesheet" href="QCSPCChartGWT.css">

 <!-- -->
 <!--Specify the chart defining Javascript file containing JSON script -->
 <!-- -->

 <script src="chartdefSimple.js"></script>

 <script>
 <!-- -->
 <!-- The QCSPCChartGWT library calls this function if present. -->
 <!-- It returns a string representation of the JSON script.
-->
 function defineChartUsingJSON()
 {
 var s = JSON.stringify(TimeXBarR);
 return s;
 }

http://quinn-curtis.com/QCSPCChartGWTWar/SPCExampleScripts.html
http://quinn-curtis.com/QCSPCChartGWTWar/SPCExampleScripts.html
http://quinn-curtis.com/QCSPCChartGWTWar/SPCExampleScripts.html
http://quinn-curtis.com/QCSPCChartGWTWar/SPCComplex.html
http://quinn-curtis.com/QCSPCChartGWTWar/SPCComplex.html
http://quinn-curtis.com/QCSPCChartGWTWar/SPCComplex.html
http://quinn-curtis.com/QCSPCChartGWTWar/SPCMediumSimple.html
http://quinn-curtis.com/QCSPCChartGWTWar/SPCMediumSimple.html
http://quinn-curtis.com/QCSPCChartGWTWar/SPCMediumSimple.html
http://www.quinn-curtis.com/QCSPCChartGWTWar/SPCSimple.html
http://www.quinn-curtis.com/QCSPCChartGWTWar/SPCSimple.html
http://www.quinn-curtis.com/QCSPCChartGWTWar/SPCSimple.html

340

 </script>

 <!-- -->
 <!-- This script loads your compiled module. -->
 <!-- If you add any GWT meta tags, they must -->
 <!-- be added before this line. -->
 <!-- -->
 <script type="text/Javascript" language="Javascript"
src="qcspcchartgwt/qcspcchartgwt.nocache.js"></script>
 </head>

 <body onload="loadform()">

 <!-- OPTIONAL: include this if you want history support -->
 <iframe src="Javascript:''" id="__gwt_historyFrame" tabIndex='-1'
style="position:absolute;width:0;height:0;border:0"></iframe>

 <!-- RECOMMENDED if your web app will not function without JavaScript enabled -->
 <noscript>
 <div style="width: 22em; position: absolute; left: 50%; margin-left: -11em;
color: red; background-color: white; border: 1px solid red; padding: 4px; font-
family: sans-serif">
 Your web browser must have JavaScript enabled
 in order for this application to display correctly.
 </div>
 </noscript>

 </body>
</html>

The line:

 <link type="text/css" rel="stylesheet" href="QCSPCChartGWT.css">

references the QCSPCChartGWT.css stylesheet. You can customize elements of the chart by modifying
the contents of that include file. See Chapter 19 CSS Style Sheets.

The line:

 <script src="chartdefSimple.js"></script>

references the chartdefSimple.js Javascript include file, which defines a Javascript record structure
(TimeXBarR) which can be converted using the JSON.stringify function into a JSON scripting string.
The Javascript definition of the TimeXBarR record could just have easily been included in the main
HTML file, without using the chartdefSimple.js include file. It's just that the TimeXBarR definition,
particularly if it has a lot of data, can be quite long and will make the main HTML file harder to
understand.

The Javascript function defineChartUsingJSON

 341

 function defineChartUsingJSON()
 {
 var s = JSON.stringify(TimeXBarR);
 return s;
 }

is the critical link link into the QCSPCChartGWT library. The library, when it starts up, looks to see if
this function is present in the host HTML page. If the function is present, it calls it, and expects the
function to return a valid chart defining JSON string. The JSON string must be a syntactically correct
JSON structure, and it must properly define a SPC chart following the rules discussed in this manual.

The Javascript record structure which is converted into a JSON string must be valid JSON. However, it
can be difficult to debug a JSON compatible Javascript structure. Typical errors even an expert is going
to make include:

Leave an extra comma at the end of the last item in a block

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15,
 },
 "Scrollbar": {
 "EnableScrollBar": true,
 "ScrollbarPosition": "SCROLLBAR_POSITION_MAX"
 },

Leave out a comma between adjacent blocks

 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 }
 "Scrollbar": {
 "EnableScrollBar": true,
 "ScrollbarPosition": "SCROLLBAR_POSITION_MAX"
 },

Fail to quote the property name

 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 ChartMode: "Time",

342

 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 }

Include only a single quote in a property name or value

 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode: "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 }

Fail to put quotes around a string value or string constant

 "InitChartProperties": {
 "SPCChartType": MEAN_RANGE_CHART,
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 }

Put quotes around a numeric or boolean value.

 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": "5",
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 }

All of the examples above have errors in them.

JSONLint.com

We relied on an external site, http:// jsonlint .com/ , where you can paste a JSON structure, have it
checked and get meaningful debugging information back. It is not a Javascript checker though. So if you
copy and paste a JSON structure, such as the TimeXBarR Javascript variable defined in the
chartDefSimple.js include file, you leave out "var TimeXBarR = " part, and the trailing semicolon ";".
The part you include is the block between, and including the first and last curly bracket, {…}.

 {
 "StaticProperties": {
 "Canvas": {
 "Width": 800,
 "Height": 550
 }

http://jsonlint.com/
http://jsonlint.com/
http://jsonlint.com/

 343

 },
 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15

 },
.
.
.

}
}

An invalid JSON script will produce an error in the JSONLint application which looks something like
this:

344

You can edit the script in place, correcting errors as the arise. Once you have removed all of the syntax
errors from the script, you will get the Valid JSON message in the Results window. At that point you
can copy the JSON script out of the edit window and back into your source Javascript file.

Just because the Javascript record structure passes a JSON syntax check doesn't mean it is setup
correctly for our JSON SPC chart parser. You must get the basic order of elements correct, and the
hierarchy of the properties correct. For any given property block, the software does a keyword check for
all valid sub-elements allowed within that block. For example, when parsing the SPCChart block, the
valid keywords for sub-elements are:

InitChartProperties
ChartPositioning
Scrollbar
UseNoTable
TableSetup

 345

MiscChartDataProperties
PrimaryChartSetup
SecondaryChartSetup
Events
SampleData
Methods

If any other keyword is found as an immediate child of the SPCChart block, an error is generated and a
message displayed on the web page. For example, the following JSON script passes the
http:// jsonlint .com/ syntax check. However, if you pass this string to the library, it will generate an
error, because the GraphStartPosX and GraphStopPosX properties are out of place.

 {
 "StaticProperties": {
 "Canvas": {
 "Width": 800,
 "Height": 550
 }
 },
 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15

 },
 "GraphStartPosX": 0.15,

 "GraphStopPosX": 0.8
}

}

The error message you would see looks something like this:

http://jsonlint.com/
http://jsonlint.com/
http://jsonlint.com/

346

When you press the OK button, you will get another error message for the GraphStopPosX property
too. This tells you the the GraphStartPosX and GraphStopPosX properties are out of place. The
corrected code should look like:

 {
 "StaticProperties": {
 "Canvas": {
 "Width": 800,
 "Height": 550
 }
 },
 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15

 },
"ChartPositioning": {

 "GraphStartPosX": 0.15,

 347

 "GraphStopPosX": 0.8
}

}
}

The defineChartUsingJSON function above loads a chart automatically when the parent HTML page is
loaded. Instead of that sequence, you may want the chart to only be loaded and displayed in response to
an external event. In that case, you would leave the defineChartUsingJSON function out of your HTML
file. Instead, make a call to the function pushJSONChartCreate, passing in the same JSON string as
the defineChartUsingJSON example.

function displayChart() {
 pushJSONChartCreate(JSON.stringify(TimeXBarR));
}

The pushJSONChartCreate function is an un-obfuscated Javascript function exported from the
QCSPCChartGWT libray, so that you can call it from within the main HTML page. In all of our
example programs, we set the default chart on the web page using defineChartUsingJSON. In the case
of the SPCExampleScripts example, we let you change the default by selecting a new chart from a drop
down list, implemented using an HTML select item. Selecting a new chart using the drop down select
element triggers an event, which calls the displayChart function. Using the passed in value of the
chartid variable, the defining chart JSON script is retrieved using getChartItem, and then that script is
converted to a string and passed into the pushJSONChartCreate function.

function displayChart(chartid) {
 var chartitem = getChartItem(chartid);
 pushJSONChartCreate(JSON.stringify(chartitem));
}

All of the examples contain the block of Javascript seen below.

 <!-- -->
 <!-- This script loads your compiled module. -->
 <!-- If you add any GWT meta tags, they must -->
 <!-- be added before this line. -->
 <!-- -->
 <script type="text/Javascript" language="Javascript"
src="qcspcchartgwt/qcspcchartgwt.nocache.js"></script>
 </head>

 <body onload="loadform()">

 <!-- OPTIONAL: include this if you want history support -->
 <iframe src="Javascript:''" id="__gwt_historyFrame" tabIndex='-1'
style="position:absolute;width:0;height:0;border:0"></iframe>

 <!-- RECOMMENDED if your web app will not function without JavaScript enabled -->

348

 <noscript>
 <div style="width: 22em; position: absolute; left: 50%; margin-left: -11em;
color: red; background-color: white; border: 1px solid red; padding: 4px; font-
family: sans-serif">
 Your web browser must have JavaScript enabled
 in order for this application to display correctly.
 </div>
 </noscript>

 </body>

This is the GWT magic which loads the browser specific version of the GWT libraries, and the
QCSPCChartGWT libraries, and creates an iframe which is used to display the charts. You should not
modify anything in this section.

Javascript, jQuery, Ajax and PHP
The data you feed into the charts will probably come from some sort of web service. You may retrieve it
directly from a database using jQuery, or you may communicate with a server side program, which
serves up the data as JSON script. Here are some examples of how to do that.

Update Chart Data by Pushing New Array Elements into a charts SampleData Stucture

Files: phpPushDataExample.html, phppushdata.php, chartDefPHPExample.js

In the Javascript located in the HTML page, it uses the jQuery Ajax function ($.Ajax) to communicate
with a PHP program located on the same server which serves up the HTML page.

The PHP (phppushdata.php) looks like:

<?php
header('Content-type: application/json; charset=utf-8');

srand();

$ret = array(
"SampleValues"=> array(

27.53 + rand(0,5),
33.95 + rand(0,5),
24.31 + rand(0,5),
28.28 + rand(0,5),
30.29 + rand(0,5),

),
"BatchCount"=> 0,
"TimeStamp"=> 1371830829074,
"Note"=> ""

);
 echo json_encode($ret);

 349

exit();
?>

Make sure you include the header block.

This uses the PHP array syntax to duplicate the record structure of a SampleValues block. The PHP
function json_enode takes variable $ret and converts it into JSON using the PHP function json_encode,
and echos it back to the calling program. The resulting JSON code will look something like:

{"SampleValues":
[28.67,36.68,24.82,29.6,31.13],"BatchCount":0,"TimeStamp":1371830829074,"Note":""}

which is a valid JSON object, and which matches the structure of an array element of our
SPCChart.SampleData.SampleIntervalRecords block. Since it is a match, it can be “pushed” into an
existing charts SampleIntervalRecords block, appending it as a new array element of that array.

We use the $(window).load event to start things off once the page is loaded. The $.ajax function is
placed as the function called by the setInterval function, when it is triggered. In this case, it is setup to
trigger every 5000 milliseconds.

Special Note – Instead of $(window).load, some have tried to use the jQuery $(document).ready event.
While this event is triggered, according to GWT documentation, it may be triggered before GWT has
finished its setup, and this means that the functions in our library (such as pushJSONChartCreate), may
not be available. So, if you want to guarantee that the page has been loaded, and GWT is done with its
business, use $(window).load as seen below.

 var timerOn = true;
 var timerID = 0;
 var timerCount = 0;

 function stopStartTimer() {

 if (timerOn) {
 clearInterval(timerID);
 timerOn = false;
 }
 else {
 timerID = setInterval(timerFunction, 5000);
 timerOn = true;
 }
 }

 function timerFunction()
 {
 $.ajax({
 url: "phppushdata.php",
 type: "GET",
 dataType: "json",

350

 error: function (jqXHR, textStatus, errorThrown) {
 alert("Error");

 },
 success: function (result) {
 // alert(JSON.stringify(result));

 result.BatchCount = timerCount;
 // simulate a sample interval every 15 minutes
 result.TimeStamp = result.TimeStamp + 900000 * timerCount;

 TimeXBarR.SPCChart.SampleData.SampleIntervalRecords.push(result);
 pushJSONChartCreate(JSON.stringify(TimeXBarR));
 timerCount++;

 }
 });

 }

$(window).load(function () {
 timerID = setInterval(function () { timerFunction() }, 5000);
 timerOn = true;
});

$.ajax Parameters

url: The url parameter points to the php file, in this case it is in the same directory as the HTML file. If
you require that the source PHP program is on an entirely different server than the HTML page, that
requires a more advanced use of the jQuery, and you will need to study the jQuery.Ajax documnetation
for more information about how to do that.

type: This is a GET operation.

dataType: This must be json

error: You can specify an error processing function which is called if an error is generated.

success: This is called if the PHP file successfully returns. The succes function is where the chart is
updated. In this case, we modify the resulting JSON object BatchCount, and TimeStamp properties, to
better simulate real-time data. In your case, if your values are not simulated, these values should be set
to their proper values in the PHP code. The JSON object represented by result is pushed into the
SPCChart.SampleData.SampleIntervalRecords as a new array element. Then the entire TimeXBarR
JSON script is converted to a string (JSON.stringify) and used to create a new chart, using
pushJSONChartCreate, taking into account any new data values which have been added.

 TimeXBarR.SPCChart.SampleData.SampleIntervalRecords.push(result);
 pushJSONChartCreate(JSON.stringify(TimeXBarR));

 351

The Javascript code for the setInterval event was extracted from the file phpPushDataExample.html,
which is the HTML file that would reside on your server, along with the phpjsondata.php file, and the .js
file, which contains the initial JSON definition of the TimeXBarR. Note that in TimeXBarR definition,
the SampleData block contains a SampleIntervalRecords definition which is defined as an empty array.
It is to this array you are adding sample interval records to with the call to
TimeXBarR.SPCChart.SampleData.SampleIntervalRecords.push(result);

var TimeXBarR=
 {

 "StaticProperties": {
 "Canvas": {
 "Width": 1024,
 "Height": 768
 }
 },
 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "MEAN_RANGE_CHART",
 "ChartMode": "Time",
 "NumSamplesPerSubgroup": 5,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },
 "Scrollbar": {
 "EnableScrollBar": true,
 "ScrollbarPosition": "SCROLLBAR_POSITION_MIN"
 },
 "SampleData": {
 "SampleIntervalRecords": []
 },

.

.

.

 "Events": {
 "EnableDataToolTip": true,
 "EnableNotesToolTip": true

 },
 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true
 }
 }
};

Special Note – You will probably need to copy an installation of the QCSPCChartGWTWar folder to an
acutal server before you will able to get the phpPushDataExample.html example to work properly.
While it is supposed to be possible, we weren't able to execute php files using the Eclipse or Visual
Studio development environments, using their built-in, local servers.

352

It is also assumed that you have a working installation of PHP installed on your server. Most Linux
systems have it by default, but you may need add it to your Windows Server Installation. See the web
site http:// php .net/ for details concerning downloads and installation. It's free.

Update Chart Data Using pushJSONChartUpdate with PHP

Files: phpUpdateExample.html, phpupdatedata.php, chartDefPHPExample.js

The previous example demonstrates how retrieve data from a PHP file in JSON format, and append it
data to the current Javascript definition of a chart, and then update the web page with the chart using the
pushJSONChartCreate function. In the next example, an entire SPCChart.SampleData JSON block will
be acquired from a PHP service. The PHP structures used to define the data block become much more
complicated. In this case, we took an example JSON block we new was correct, and used a JSON to
PHP translation tool found here: http:// php .fnlist.com/ php /json_decode , to translate it into PHP.

{
 "SPCChart": {
 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628,
 33.95771604022404,
 24.310097827061817,
 28.282642847792765,
 30.2908518818265
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214,
 34.38930645615096,
 28.0203674441636,
 33.27153359969366,
 36.8305571558275
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },
 {
 "SampleValues": [
 35.21321620109259,
 32.93940741018088,
 33.66485557976163,
 34.17314124609133,
 24.576683179863725
],
 "BatchCount": 2,

http://php.fnlist.com/php/json_decode
http://php.fnlist.com/php/json_decode
http://php.fnlist.com/php/json_decode
http://php.fnlist.com/php/json_decode
http://php.fnlist.com/php/json_decode
http://php.net/
http://php.net/
http://php.net/

 353

 "TimeStamp": 1371832629074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.898302097237174,
 25.906531082892915,
 26.950768095191137,
 30.812058501916457,
 31.085075984847936
],
 "BatchCount": 3,
 "TimeStamp": 1371833529074,
 "Note": ""
 }
]
 },
 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true
 }
 }
}

The resulting PHP code looks like:

stdClass::__set_state(array(
 'SPCChart' =>
 stdClass::__set_state(array(
 'SampleData' =>
 stdClass::__set_state(array(
 'SampleIntervalRecords' =>
 array (
 0 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 27.531315151486279,
 1 => 33.957716040224042,
 2 => 24.310097827061817,
 3 => 28.282642847792765,
 4 => 30.290851881826502,
),
 'BatchCount' => 0,
 'TimeStamp' => 1371830829074,
 'Note' => '',
)),
 1 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (

354

 0 => 27.444285005240214,
 1 => 34.389306456150962,
 2 => 28.0203674441636,
 3 => 33.271533599693662,
 4 => 36.830557155827499,
),
 'BatchCount' => 1,
 'TimeStamp' => 1371831729074,
 'Note' => '',
)),
 2 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 35.213216201092592,
 1 => 32.939407410180877,
 2 => 33.664855579761628,
 3 => 34.173141246091333,
 4 => 24.576683179863725,
),
 'BatchCount' => 2,
 'TimeStamp' => 1371832629074,
 'Note' => '',
)),
 3 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 27.898302097237174,
 1 => 25.906531082892915,
 2 => 26.950768095191137,
 3 => 30.812058501916457,
 4 => 31.085075984847936,
),
 'BatchCount' => 3,
 'TimeStamp' => 1371833529074,
 'Note' => '',
)),
),
)),
 'Methods' =>
 stdClass::__set_state(array(
 'AutoCalculateControlLimits' => true,
 'AutoScaleYAxes' => true,
 'RebuildUsingCurrentData' => true,
)),
)),
));

 355

The stdClass::__set_state macro is useless in this case, so remove all of them (replace
stdClass::__set_state with nothing) . Also, you can remove the explicit array indexing, 0 =>, 1 =>, 2
=>, etc. The JSON=>PHP translation does leave in trailing commas on the last element of arrays, but
since they are removed properly in the json_encode call, just leave them it, rather than risk deleting one
which is critical. The final file (phpupdatedata.php) looks like:

<?php
header('Content-type: application/json; charset=utf-8');
srand();

$ret = (array(
 'SPCChart' =>
 (array(
 'SampleData' =>
 (array(
 'SampleIntervalRecords' =>
 array (
 (array(
 'SampleValues' =>
 array (
 27.531315151486279,
 33.957716040224042,
 24.310097827061817,
 28.282642847792765,
 30.290851881826502,
),
 'BatchCount' => 0,
 'TimeStamp' => 1371830829074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 27.444285005240214,
 34.389306456150962,
 28.0203674441636,
 33.271533599693662,
 36.830557155827499,
),
 'BatchCount' => 1,
 'TimeStamp' => 1371831729074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 35.213216201092592,
 32.939407410180877,
 33.664855579761628,
 34.173141246091333,
 24.576683179863725,
),

356

 'BatchCount' => 2,
 'TimeStamp' => 1371832629074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 27.898302097237174,
 25.906531082892915,
 26.950768095191137,
 30.812058501916457,
 31.085075984847936,
),
 'BatchCount' => 3,
 'TimeStamp' => 1371833529074,
 'Note' => '',
)),
),
)),
 'Methods' =>
 (array(
 'AutoCalculateControlLimits' => true,
 'AutoScaleYAxes' => true,
 'RebuildUsingCurrentData' => true,
)),
)),
));

 echo json_encode($ret);

exit();
?>

Setup the setTimeout function using the following code. Note, that since were are just updating the
currently defined chart, and not defining a new from scratch, we call the pushJSONChartUpdate
function. The code segment below is extracted from the phpUpdateExample.html file.

$(window).load(function () {
 timerID = setTimeout(function () {
 $.ajax({
 url: "phpupdatedata.php",
 type: "GET",
 dataType: "json",
 error: function (jqXHR, textStatus, errorThrown) {
 alert("Error");

 },
 success: function (result) {
 // alert(JSON.stringify(result));

 357

 pushJSONChartUpdate(JSON.stringify(result));

 }
 })
 }, 1000);
});

Create a New Chart from PHP Script

Files: phpCreateExample.html, phpCreateChart.php, chartDefPHPExample.js

Below is an example which uses PHP to create a completely new chart, with data. Since it is a
completely new chart, the pushJSONChartCreate method is used. In the example below, we change
the current chart to an Individual-Range chart. The JSON of the chart we want to create is:

{
 "SPCChart": {
 "InitChartProperties": {
 "SPCChartType": "INDIVIDUAL_RANGE_CHART",
 "ChartMode": "Batch",
 "NumSamplesPerSubgroup": 1,
 "NumDatapointsInView": 12,
 "TimeIncrementMinutes": 15
 },
 "ChartPositioning": {
 "GraphStartPosX": 0.125
 },
 "Scrollbar": {
 "EnableScrollBar": true
 },
 "TableSetup": {
 "HeaderStringsLevel": "HEADER_STRINGS_LEVEL3",
 "EnableInputStringsDisplay": true,
 "EnableCategoryValues": false,
 "EnableCalculatedValues": false,
 "EnableTotalSamplesValues": false,
 "EnableNotes": false,
 "EnableTimeValues": true,
 "EnableNotesToolTip": true,
 "TableBackgroundMode": "TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL",
 "BackgroundColor1": "WHITE",
 "BackgroundColor2": "GRAY",
 "TableAlarmEmphasisMode": "ALARM_HIGHLIGHT_BAR",
 "ChartAlarmEmphasisMode": "ALARM_HIGHLIGHT_SYMBOL",
 "ChartData": {
 "Title": "Individual Range Chart",
 "PartNumber": "283501",
 "ChartNumber": "17",
 "PartName": "TransmissionCasingBolt",
 "Operation": "Threading",
 "SpecificationLimits": "27.0 to 35.0",

358

 "Operator": "J.Fenamore",
 "Machine": "#11",
 "Gauge": "#8645",
 "UnitOfMeasure": "0.0001inch",
 "ZeroEquals": "zero",
 "DateString": "7/04/2013",
 "NotesMessage": "ControllimitspreparedMay10",
 "NotesHeader": "NOTES"
 }
 },
 "Events": {
 "EnableDataToolTip": true,
 "AlarmStateEventEnable": true
 },
 "SampleData": {
 "SampleIntervalRecords": [
 {
 "SampleValues": [
 27.53131515148628
],
 "BatchCount": 0,
 "TimeStamp": 1371830829074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.444285005240214
],
 "BatchCount": 1,
 "TimeStamp": 1371831729074,
 "Note": ""
 },
 {
 "SampleValues": [
 35.21321620109259
],
 "BatchCount": 2,
 "TimeStamp": 1371832629074,
 "Note": ""
 },
 {
 "SampleValues": [
 27.898302097237174
],
 "BatchCount": 3,
 "TimeStamp": 1371833529074,
 "Note": ""
 },
 {
 "SampleValues": [
 22.94549873989527
],
 "BatchCount": 4,
 "TimeStamp": 1371834429074,
 "Note": ""

 359

 },
 {
 "SampleValues": [
 25.757197681039116
],
 "BatchCount": 5,
 "TimeStamp": 1371835329074,
 "Note": ""
 },
 {
 "SampleValues": [
 34.04503169439933
],
 "BatchCount": 6,
 "TimeStamp": 1371836229074,
 "Note": ""
 },
 {
 "SampleValues": [
 33.893820803904475
],
 "BatchCount": 7,
 "TimeStamp": 1371837129074,
 "Note": ""
 },
 {
 "SampleValues": [
 35.85689222409033
],
 "BatchCount": 8,
 "TimeStamp": 1371838029074,
 "Note": ""
 },
 {
 "SampleValues": [
 30.749686153841764
],
 "BatchCount": 9,
 "TimeStamp": 1371838929074,
 "Note": ""
 },
 {
 "SampleValues": [
 35.27238495008025
],
 "BatchCount": 10,
 "TimeStamp": 1371839829074,
 "Note": ""
 }
]
 },
 "Methods": {
 "AutoCalculateControlLimits": true,
 "AutoScaleYAxes": true,
 "RebuildUsingCurrentData": true

360

 }
 }
}

The JSON → PHP conversion results in:

stdClass::__set_state(array(
 'SPCChart' =>
 stdClass::__set_state(array(
 'InitChartProperties' =>
 stdClass::__set_state(array(
 'SPCChartType' => 'INDIVIDUAL_RANGE_CHART',
 'ChartMode' => 'Batch',
 'NumSamplesPerSubgroup' => 1,
 'NumDatapointsInView' => 12,
 'TimeIncrementMinutes' => 15,
)),
 'ChartPositioning' =>
 stdClass::__set_state(array(
 'GraphStartPosX' => 0.125,
)),
 'Scrollbar' =>
 stdClass::__set_state(array(
 'EnableScrollBar' => true,
)),
 'TableSetup' =>
 stdClass::__set_state(array(
 'HeaderStringsLevel' => 'HEADER_STRINGS_LEVEL3',
 'EnableInputStringsDisplay' => true,
 'EnableCategoryValues' => false,
 'EnableCalculatedValues' => false,
 'EnableTotalSamplesValues' => false,
 'EnableNotes' => false,
 'EnableTimeValues' => true,
 'EnableNotesToolTip' => true,
 'TableBackgroundMode' => 'TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL',
 'BackgroundColor1' => 'WHITE',
 'BackgroundColor2' => 'GRAY',
 'TableAlarmEmphasisMode' => 'ALARM_HIGHLIGHT_BAR',
 'ChartAlarmEmphasisMode' => 'ALARM_HIGHLIGHT_SYMBOL',
 'ChartData' =>
 stdClass::__set_state(array(
 'Title' => 'Individual Range Chart',
 'PartNumber' => '283501',
 'ChartNumber' => '17',
 'PartName' => 'TransmissionCasingBolt',
 'Operation' => 'Threading',
 'SpecificationLimits' => '27.0 to 35.0',
 'Operator' => 'J.Fenamore',
 'Machine' => '#11',
 'Gauge' => '#8645',
 'UnitOfMeasure' => '0.0001inch',
 'ZeroEquals' => 'zero',

 361

 'DateString' => '7/04/2013',
 'NotesMessage' => 'ControllimitspreparedMay10',
 'NotesHeader' => 'NOTES',
)),
)),
 'Events' =>
 stdClass::__set_state(array(
 'EnableDataToolTip' => true,
 'AlarmStateEventEnable' => true,
)),
 'SampleData' =>
 stdClass::__set_state(array(
 'SampleIntervalRecords' =>
 array (
 0 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 27.531315151486279,
),
 'BatchCount' => 0,
 'TimeStamp' => 1371830829074,
 'Note' => '',
)),
 1 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 27.444285005240214,
),
 'BatchCount' => 1,
 'TimeStamp' => 1371831729074,
 'Note' => '',
)),
 2 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 35.213216201092592,
),
 'BatchCount' => 2,
 'TimeStamp' => 1371832629074,
 'Note' => '',
)),
 3 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 27.898302097237174,
),
 'BatchCount' => 3,
 'TimeStamp' => 1371833529074,
 'Note' => '',
)),
 4 =>

362

 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 22.945498739895271,
),
 'BatchCount' => 4,
 'TimeStamp' => 1371834429074,
 'Note' => '',
)),
 5 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 25.757197681039116,
),
 'BatchCount' => 5,
 'TimeStamp' => 1371835329074,
 'Note' => '',
)),
 6 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 34.045031694399327,
),
 'BatchCount' => 6,
 'TimeStamp' => 1371836229074,
 'Note' => '',
)),
 7 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 33.893820803904475,
),
 'BatchCount' => 7,
 'TimeStamp' => 1371837129074,
 'Note' => '',
)),
 8 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 35.856892224090331,
),
 'BatchCount' => 8,
 'TimeStamp' => 1371838029074,
 'Note' => '',
)),
 9 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 30.749686153841765,
),

 363

 'BatchCount' => 9,
 'TimeStamp' => 1371838929074,
 'Note' => '',
)),
 10 =>
 stdClass::__set_state(array(
 'SampleValues' =>
 array (
 0 => 35.272384950080252,
),
 'BatchCount' => 10,
 'TimeStamp' => 1371839829074,
 'Note' => '',
)),
),
)),
 'Methods' =>
 stdClass::__set_state(array(
 'AutoCalculateControlLimits' => true,
 'AutoScaleYAxes' => true,
 'RebuildUsingCurrentData' => true,
)),
)),
));

After removing the stdClass::__set_state macros, and the explicit array indexing, the resulting PHP
file looks like:

<?php
header('Content-type: application/json; charset=utf-8');
srand();

$ret =
(array(
 'SPCChart' =>
 (array(
 'InitChartProperties' =>
 (array(
 'SPCChartType' => 'INDIVIDUAL_RANGE_CHART',
 'ChartMode' => 'Batch',
 'NumSamplesPerSubgroup' => 1,
 'NumDatapointsInView' => 12,
 'TimeIncrementMinutes' => 15,
)),
 'ChartPositioning' =>
 (array(
 'GraphStartPosX' => 0.125,
)),
 'Scrollbar' =>
 (array(
 'EnableScrollBar' => true,
)),
 'TableSetup' =>
 (array(

364

 'HeaderStringsLevel' => 'HEADER_STRINGS_LEVEL3',
 'EnableInputStringsDisplay' => true,
 'EnableCategoryValues' => false,
 'EnableCalculatedValues' => false,
 'EnableTotalSamplesValues' => false,
 'EnableNotes' => false,
 'EnableTimeValues' => true,
 'EnableNotesToolTip' => true,
 'TableBackgroundMode' => 'TABLE_SINGLE_COLOR_BACKGROUND_GRIDCELL',
 'BackgroundColor1' => 'WHITE',
 'BackgroundColor2' => 'GRAY',
 'TableAlarmEmphasisMode' => 'ALARM_HIGHLIGHT_BAR',
 'ChartAlarmEmphasisMode' => 'ALARM_HIGHLIGHT_SYMBOL',
 'ChartData' =>
 (array(
 'Title' => 'Individual Range Chart',
 'PartNumber' => '283501',
 'ChartNumber' => '17',
 'PartName' => 'TransmissionCasingBolt',
 'Operation' => 'Threading',
 'SpecificationLimits' => '27.0 to 35.0',
 'Operator' => 'J.Fenamore',
 'Machine' => '#11',
 'Gauge' => '#8645',
 'UnitOfMeasure' => '0.0001inch',
 'ZeroEquals' => 'zero',
 'DateString' => '7/04/2013',
 'NotesMessage' => 'ControllimitspreparedMay10',
 'NotesHeader' => 'NOTES',
)),
)),
 'Events' =>
 (array(
 'EnableDataToolTip' => true,
 'AlarmStateEventEnable' => true,
)),
 'SampleData' =>
 (array(
 'SampleIntervalRecords' =>
 array (
 (array(
 'SampleValues' =>
 array (
 27.531315151486279,
),
 'BatchCount' => 0,
 'TimeStamp' => 1371830829074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 27.444285005240214,
),
 'BatchCount' => 1,

 365

 'TimeStamp' => 1371831729074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 35.213216201092592,
),
 'BatchCount' => 2,
 'TimeStamp' => 1371832629074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 27.898302097237174,
),
 'BatchCount' => 3,
 'TimeStamp' => 1371833529074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 22.945498739895271,
),
 'BatchCount' => 4,
 'TimeStamp' => 1371834429074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 25.757197681039116,
),
 'BatchCount' => 5,
 'TimeStamp' => 1371835329074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 34.045031694399327,
),
 'BatchCount' => 6,
 'TimeStamp' => 1371836229074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 33.893820803904475,
),
 'BatchCount' => 7,
 'TimeStamp' => 1371837129074,

366

 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 35.856892224090331,
),
 'BatchCount' => 8,
 'TimeStamp' => 1371838029074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 30.749686153841765,
),
 'BatchCount' => 9,
 'TimeStamp' => 1371838929074,
 'Note' => '',
)),
 (array(
 'SampleValues' =>
 array (
 35.272384950080252,
),
 'BatchCount' => 10,
 'TimeStamp' => 1371839829074,
 'Note' => '',
)),
),
)),
 'Methods' =>
 (array(
 'AutoCalculateControlLimits' => true,
 'AutoScaleYAxes' => true,
 'RebuildUsingCurrentData' => true,
)),
)),
));

 echo json_encode($ret);

exit();
?>

Setup the setTimeout function using the following code. Note, that since were are creating a new chart,
we call the pushJSONChartCreate function. The code segment below is extracted from the
phpCreateExample.js file.

 $(window).load(function () {
 timerID = setTimeout(function () {
 $.ajax({

 367

 url: "phpcreatechart.php",
 type: "GET",
 dataType: "json",
 error: function (jqXHR, textStatus, errorThrown) {
 alert("Error");

 },
 success: function (result) {
 alert(JSON.stringify(result));

 pushJSONChartCreate(JSON.stringify(result));
 }
 })
 }, 1000);
 });

Appendix

List of Color Constants:

 HEX R G B
ALICEBLUE 0xfff0f8ff 0.422 0.059 1.000

ANTIQUEWHITE 0xfffaebd7 0.905 0.140 0.980

AQUA 0xff00ffff 0.500 1.000 1.000

AQUAMARINE 0xff7fffd4 0.556 0.502 1.000

AZURE 0xfff0ffff 0.500 0.059 1.000

BEIGE 0xfff5f5dc 0.833 0.102 0.961

BISQUE 0xffffe4c4 0.910 0.231 1.000

BLACK 0xff000000 0.000 0.000 0.000

BLANCHEDALMOND 0xffffebcd 0.900 0.196 1.000

BLUE 0xff0000ff 0.333 1.000 1.000

BLUEVIOLET 0xff8a2be2 0.247 0.810 0.886

BROWN 0xffa52a2a 0.000 0.745 0.647

BURLYWOOD 0xffdeb887 0.906 0.392 0.871

CADETBLUE 0xff5f9ea0 0.495 0.406 0.627

CHARTREUSE 0xff7fff00 0.750 1.000 1.000

CHOCOLATE 0xffd2691e 0.931 0.857 0.824

CORAL 0xffff7f50 0.955 0.686 1.000

CORNFLOWERBLUE 0xff6495ed 0.393 0.578 0.929

CORNSILK 0xfffff8dc 0.867 0.137 1.000

CRIMSON 0xffdc143c 0.033 0.909 0.863

 369

CYAN 0xff00ffff

DARKBLUE 0xff00008b 0.333 1.000 0.545

DARKCYAN 0xff008b8b 0.500 1.000 0.545

DARKGOLDENROD 0xffb8860b 0.882 0.940 0.722

DARKGRAY 0xffa9a9a9 0.000 0.000 0.663

DARKGREY 0xffa9a9a9 0.000 0.000 0.663

DARKGREEN 0xff006400 0.667 1.000 0.392

DARKKHAKI 0xffbdb76b 0.846 0.434 0.741

DARKMAGENTA 0xff8b008b 0.167 1.000 0.545

DARKOLIVEGREEN 0xff556b2f 0.772 0.561 0.420

DARKORANGE 0xffff8c00 0.908 1.000 1.000

DARKORCHID 0xff9932cc 0.222 0.755 0.800

DARKRED 0xff8b0000 0.000 1.000 0.545

DARKSALMON 0xffe9967a 0.958 0.476 0.914

DARKSEAGREEN 0xff8fbc8f 0.667 0.239 0.737

DARKSLATEBLUE 0xff483d8b 0.310 0.561 0.545

DARKSLATEGRAY 0xff2f4f4f 0.500 0.405 0.310

DARKSLATEGREY 0xff2f4f4f 0.500 0.405 0.310

DARKTURQUOISE 0xff00ced1 0.498 1.000 0.820

DARKVIOLET 0xff9400d3 0.216 1.000 0.827

DEEPPINK 0xffff1493 0.090 0.922 1.000

DEEPSKYBLUE 0xff00bfff 0.458 1.000 1.000

DIMGRAY 0xff696969 0.000 0.000 0.412

DIMGREY 0xff696969 0.000 0.000 0.412

DODGERBLUE 0xff1e90ff 0.418 0.882 1.000

FIREBRICK 0xffb22222 0.000 0.809 0.698

FLORALWHITE 0xfffffaf0 0.889 0.059 1.000

370

FORESTGREEN 0xff228b22 0.667 0.755 0.545

FUCHSIA 0xffff00ff 0.167 1.000 1.000

GAINSBORO 0xffdcdcdc 0.000 0.000 0.863

GHOSTWHITE 0xfff8f8ff 0.333 0.027 1.000

GOLDENROD 0xffdaa520 0.881 0.853 0.855

GRAY 0xff808080 0.000 0.000 0.502

GREY 0xff808080 0.000 0.000 0.502

GREEN 0xff008000 0.667 1.000 0.502

GREENYELLOW 0xffadff2f 0.768 0.816 1.000

HONEYDEW 0xfff0fff0 0.667 0.059 1.000

HOTPINK 0xffff69b4 0.083 0.588 1.000

INDIANRED 0xffcd5c5c 0.000 0.551 0.804

INDIGO 0xff4b0082 0.237 1.000 0.510

IVORY 0xfffffff0 0.833 0.059 1.000

KHAKI 0xfff0e68c 0.850 0.417 0.941

LAVENDER 0xffe6e6fa 0.333 0.080 0.980

LAVENDERBLUSH 0xfffff0f5 0.056 0.059 1.000

LAWNGREEN 0xff7cfc00 0.749 1.000 0.988

LEMONCHIFFON 0xfffffacd 0.850 0.196 1.000

LIGHTBLUE 0xffadd8e6 0.459 0.248 0.902

LIGHTCORAL 0xfff08080 0.000 0.467 0.941

LIGHTCYAN 0xffe0ffff 0.500 0.122 1.000

LIGHTGOLDENRODYELLOW 0xfffafad2 0.833 0.160 0.980

LIGHTGREEN 0xff90ee90 0.667 0.395 0.933

LIGHTGREY 0xffd3d3d3 0.000 0.000 0.827

LIGHTGRAY 0xffd3d3d3 0.000 0.000 0.827

LIGHTPINK 0xffffb6c1 0.025 0.286 1.000

LIGHTSALMON 0xffffa07a 0.952 0.522 1.000

 371

LIGHTSEAGREEN 0xff20b2aa 0.509 0.820 0.698

LIGHTSKYBLUE 0xff87cefa 0.436 0.460 0.980

LIGHTSLATEGRAY 0xff778899 0.417 0.222 0.600

LIGHTSLATEGREY 0xff778899 0.417 0.222 0.600

LIGHTSTEELBLUE 0xffb0c4de 0.406 0.207 0.871

LIGHTYELLOW 0xffffffe0 0.833 0.122 1.000

LIME 0xff00ff00 0.667 1.000 1.000

LIMEGREEN 0xff32cd32 0.667 0.756 0.804

LINEN 0xfffaf0e6 0.917 0.080 0.980

MAGENTA 0xffff00ff 0.167 1.000 1.000

MAROON 0xff800000 0.000 1.000 0.502

MEDIUMAQUAMARINE 0xff66cdaa 0.557 0.502 0.804

MEDIUMBLUE 0xff0000cd 0.333 1.000 0.804

MEDIUMORCHID 0xffba55d3 0.200 0.597 0.827

MEDIUMPURPLE 0xff9370db 0.279 0.489 0.859

MEDIUMSEAGREEN 0xff3cb371 0.592 0.665 0.702

MEDIUMSLATEBLUE 0xff7b68ee 0.310 0.563 0.933

MEDIUMSPRINGGREEN 0xff00fa9a 0.564 1.000 0.980

MEDIUMTURQUOISE 0xff48d1cc 0.506 0.656 0.820

MEDIUMVIOLETRED 0xffc71585 0.105 0.894 0.780

MIDNIGHTBLUE 0xff191970 0.333 0.777 0.439

MINTCREAM 0xfff5fffa 0.583 0.039 1.000

MISTYROSE 0xffffe4e1 0.983 0.118 1.000

MOCCASIN 0xffffe4b5 0.894 0.290 1.000

NAVAJOWHITE 0xffffdead 0.900 0.322 1.000

NAVY 0xff000080 0.333 1.000 0.502

OLDLACE 0xfffdf5e6 0.891 0.091 0.992

372

OLIVE 0xff808000 0.833 1.000 0.502

OLIVEDRAB 0xff6b8e23 0.779 0.754 0.557

ORANGE 0xffffa500 0.892 1.000 1.000

ORANGERED 0xffff4500 0.955 1.000 1.000

ORCHID 0xffda70d6 0.160 0.486 0.855

PALEGOLDENROD 0xffeee8aa 0.848 0.286 0.933

PALEGREEN 0xff98fb98 0.667 0.394 0.984

PALETURQUOISE 0xffafeeee 0.500 0.265 0.933

PALEVIOLETRED 0xffdb7093 0.055 0.489 0.859

PAPAYAWHIP 0xffffefd5 0.897 0.165 1.000

PEACHPUFF 0xffffdab9 0.921 0.275 1.000

PINK 0xffffc0cb

POWDERBLUE 0xffb0e0e6 0.481 0.235 0.902

PURPLE 0xff800080 0.167 1.000 0.502

RED 0xffff0000 0.000 1.000 1.000

ROSYBROWN 0xffbc8f8f 0.000 0.239 0.737

ROYALBLUE 0xff4169e1 0.375 0.711 0.882

SADDLEBROWN 0xff8b4513 0.931 0.863 0.545

SALMON 0xfffa8072 0.983 0.544 0.980

SANDYBROWN 0xfff4a460 0.923 0.607 0.957

SEAGREEN 0xff2e8b57 0.593 0.669 0.545

SEASHELL 0xfffff5ee 0.931 0.067 1.000

SIENNA 0xffa0522d 0.946 0.719 0.627

SILVER 0xffc0c0c0 0.000 0.000 0.753

SKYBLUE 0xff87ceeb 0.452 0.426 0.922

SLATEBLUE 0xff6a5acd 0.310 0.561 0.804

SLATEGRAY 0xff708090 0.417 0.222 0.565

SLATEGREY 0xff708090 0.417 0.222 0.565

 373

SPRINGGREEN 0xff00ff7f 0.584 1.000 1.000

STEELBLUE 0xff4682b4 0.424 0.611 0.706

TAN 0xffD2B48C

TEAL 0xff008080 0.500 1.000 0.502

THISTLE 0xffd8bfd8 0.167 0.116 0.847

TOMATO 0xffff6347 0.975 0.722 1.000

TURQUOISE 0xff40e0d0 0.517 0.714 0.878

VIOLET 0xffee82ee

WHEAT 0xffF5DEB3

WHITE 0xffffffff

WHITESMOKE 0xffF5F5F5

YELLOW 0xffFFFF00

YELLOWGREEN 0xff9ACD32

TABLEGREEN 0xff00ffcc

EMPTYCOLOR 0x00000000

TRANSPARENT 0x00000000

Index
123SigmaControlLimits...59, 99, 108, 113, 114, 165, 166,

169, 170, 228, 229, 232
ackground..157, 222
AddControlRules......59, 99, 116, 117, 171, 233, 278, 279,

280, 282
AddNote..57, 179
AIAGv, 9, 10, 68, 115, 116, 264, 266, 272, 274, 275, 279,

280, 281, 331
ajax.....................................vi, 17, 348, 349, 350, 356, 366
alarm event handling...174
Alarm Highlighting. .95, 96, 139, 185, 187, 188, 210, 242,

243, 244, 246, 285
Alarm highlighting...95, 96, 139, 185, 187, 188, 210, 242,

243, 244, 246, 285
AlarmReportMode..56, 174
AlarmStateEventEnable.....5, 60, 182, 184, 185, 240, 241,

242, 288, 292, 358, 361, 364
AlarmTimeFormatString...56
AlarmTransitionEventEnable..................................60, 288
AnnotationFont............................55, 72, 76, 159, 160, 225
Attribute Control Chart. iv, v, 8, 22, 23, 39, 40, 41, 45, 77,

78, 79, 99, 129, 130, 144, 189, 210, 211, 212, 213, 214,
215, 231, 238, 247, 248, 253, 255

Attribute Control Chart. .8, 23, 39, 40, 41, 45, 77, 79, 130,
144, 189, 210, 211, 212, 213, 214, 215, 231, 238, 247,
248, 253, 255

AutoCalculateControlLimits....12, 61, 137, 138, 164, 165,
166, 167, 169, 171, 176, 177, 179, 199, 228, 229, 230,
232, 234, 235, 236, 238, 276, 351, 353, 354, 356, 359,
363, 366

AutoLogAlarmsAsNotes.........................56, 139, 188, 246
AutoLogAlarmsAsNotes...............................139, 188, 246
AutoScaleYAxes......12, 61, 102, 137, 165, 166, 176, 177,

179, 229, 235, 236, 238, 276, 351, 353, 354, 356, 359,
363, 366

axis 9, 24, 48, 139, 142, 143, 159, 182, 192, 193, 194, 195,
210, 211, 212, 239, 250, 251, 252, 317, 318, 322

Axis......9, 24, 48, 139, 142, 143, 159, 182, 192, 193, 194,
195, 210, 211, 212, 239, 250, 251, 252, 317, 318, 322

AxisLabelFont.............................54, 72, 76, 159, 160, 225
AxisLabelMode................57, 101, 102, 194, 195, 251, 252
AxisTitle...159
AxisTitle...159
AxisTitleFont...............................55, 72, 76, 159, 160, 225
BACKGROUND..6, 92, 93, 139, 157, 158, 159, 222, 223,

224

Background....6, 92, 93, 94, 139, 157, 158, 159, 222, 223,
224

BackgroundColor1.....53, 54, 55, 88, 90, 93, 94, 157, 158,
159, 219, 222, 223, 224, 357, 360, 364

BatchCount.....14, 15, 16, 17, 61, 123, 124, 126, 127, 128,
129, 130, 131, 132, 133, 135, 147, 148, 149, 168, 177,
178, 179, 190, 191, 192, 196, 215, 216, 231, 235, 236,
237, 238, 248, 249, 250, 252, 253, 299, 300, 348, 349,
350, 352, 353, 354, 355, 356, 358, 359, 361, 362, 363,
364, 365, 366

BatchIDString.61, 102, 124, 126, 127, 177, 178, 179, 191,
192, 195, 196, 235, 236, 237, 238, 252, 253

BottomLabelMargin............................55, 83, 84, 163, 226
ButtonMask...55, 60, 88, 90, 240
c-chart.8, 23, 40, 43, 45, 77, 130, 131, 210, 211, 214, 215,

248, 257
c-Chart8, 23, 40, 43, 45, 77, 130, 131, 210, 211, 214, 215,

248, 257
CalculatedItemDecimals....................................56, 97, 160
Canvas 1, 3, 50, 52, 54, 69, 71, 72, 78, 309, 310, 311, 336,

337, 342, 345, 346, 351
Canvas height..72
Canvas width...72
Changing Default Characteristics of the Chart..............210
Chapter Summary...1
Chart Fonts....................................139, 159, 160, 210, 224
Chart Fonts....................................139, 159, 160, 210, 224
Chart Position....................v, 139, 162, 210, 225, 308, 310
Chart Position..139, 162, 210, 225
ChartAlarmEmphasisMode5, 55, 60, 88, 90, 94, 151, 186,

187, 219, 244, 357, 360, 364
ChartAlarmEmphasisMode.............................94, 186, 244
ChartData.....5, 15, 16, 51, 56, 61, 65, 88, 96, 97, 98, 123,

131, 132, 134, 135, 151, 152, 155, 156, 160, 165, 166,
174, 179, 188, 190, 204, 207, 214, 219, 220, 221, 228,
229, 230, 246, 259, 299, 323, 324, 327, 329, 345, 357,
360, 364

ChartMode..4, 12, 13, 51, 52, 55, 78, 79, 80, 81, 144, 145,
151, 189, 190, 193, 204, 207, 209, 212, 213, 214, 218,
247, 250, 298, 337, 341, 342, 343, 345, 346, 351, 357,
360, 363

ChartMode"...342
ChartNumber......5, 15, 56, 90, 96, 97, 135, 151, 155, 156,

157, 219, 220, 221, 289, 290, 357, 360, 364
ChartNumberHeader 50, 54, 56, 66, 71, 73, 156, 220, 328,

329

375

ChartPositioning.....50, 52, 53, 55, 61, 63, 77, 83, 84, 162, 163,
193, 218, 225, 226, 250, 320, 325, 344, 346, 357, 360, 363

control limit alarms...22
control limits. iv, 5, 9, 10, 15, 25, 29, 30, 40, 97, 102, 107, 108,

109, 113, 118, 119, 123, 137, 139, 140, 151, 159, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 210, 227,
228, 229, 230, 231, 232, 233, 234, 235, 255, 259, 264, 265,
268, 269, 275, 276, 280, 283, 290

Control Limits....9, 10, 25, 29, 30, 40, 118, 139, 140, 151, 159,
163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,
175, 176, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
210, 227, 228, 229, 230, 231, 232, 233, 234, 235, 255, 259,
264, 265, 268, 269, 275, 276, 280

control limits -...268
control limits - 2of32s...268
control limits - 31s..268
ControlLimitLabelFont..................50, 55, 72, 76, 159, 160, 225
ControlLimits.. .12, 56, 58, 59, 61, 99, 107, 108, 113, 114, 117,

118, 123, 124, 127, 137, 138, 164, 165, 166, 167, 168, 169,
170, 171, 172, 174, 176, 177, 179, 199, 204, 219, 227, 228,
229, 230, 231, 232, 234, 235, 236, 238, 275, 276, 280, 282,
351, 353, 354, 356, 358, 359, 361, 363, 364, 366

ControlLimits"..166
Cp 9, 10, 69, 151, 154, 155, 183, 240, 259, 261, 262, 292, 332
Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu, and Ppk.................9, 10
Cp, Cpl, Cpu, Cpk, Cpm, Pp, Ppl, Ppu, and Ppk.................9, 10
Creating a Batch-Based Attribute Control Chart...................210
Creating a Batch-Based Variable Control Chart....................139
custom rules.......................v, 185, 243, 264, 278, 281, 283, 285
Custom Rules.........................185, 243, 264, 278, 281, 283, 285
customer support..1, iv, 21
Customer Support...1, 21
CustomTimeFormatString...56, 97
CuSum chart.....24, 33, 52, 79, 99, 139, 141, 144, 190, 207, 208
CuSum chart......................................24, 33, 139, 141, 207, 208
CuSumHValue.....................................51, 55, 79, 144, 190, 209
CuSumKValue.....................................51, 55, 79, 144, 190, 209
CuSumMeanValue...............................51, 55, 79, 144, 190, 209
Data Tooltips...................................v, 9, 22, 288, 291, 292, 293
Data Tooltips..9
DataSimulation.............12, 14, 61, 123, 133, 134, 216, 249, 276
DataToolTip 5, 55, 60, 88, 90, 92, 182, 183, 184, 185, 186, 240,

241, 242, 243, 244, 291, 292, 293, 351, 358, 361, 364
DataToolTip..183, 184, 240, 241
Datei, ii, iv, 5, 11, 15, 16, 19, 20, 21, 24, 56, 57, 61, 66, 67, 84,

85, 90, 96, 97, 101, 103, 124, 125, 126, 127, 128, 131, 132,
133, 135, 137, 138, 142, 145, 146, 147, 151, 155, 156, 176,
178, 180, 189, 190, 211, 219, 221, 235, 237, 238, 297, 298,
299, 300, 301, 302, 303, 329, 331, 334, 338, 348, 350, 352,
355, 356, 357, 358, 361, 364

DateHeader..56, 66, 97, 156, 221, 329
DateString...5, 56, 90, 96, 97, 124, 151, 155, 219, 358, 361, 364
debugging..334, 336, 342
DefaultAlarmColors............................50, 53, 54, 71, 72, 75, 76
DefaultChartFonts..........................50, 54, 72, 76, 159, 160, 225
DefaultControlLimitSigma..56, 204
DefaultFontName.......50, 54, 69, 71, 73, 74, 159, 224, 309, 310
DefaultTableFont ...310
DefectOpportunitiesPerUnit..56, 214
deployment...ii, vi, 19, 334, 335, 338
Developer License..ii

Developer License..ii
DPMO 8, 23, 45, 66, 77, 129, 210, 211, 214, 248, 256, 257, 330
DPMO..............8, 23, 45, 77, 129, 210, 211, 214, 248, 256, 257
Duncan.....v, 9, 10, 68, 115, 116, 264, 265, 266, 268, 273, 274,

275, 279, 280, 281, 331
Duncan Rules.....9, 10, 115, 116, 264, 265, 266, 268, 273, 274,

275, 279, 280, 281
EnableAlarmStatusValues......60, 185, 186, 187, 242, 243, 244,

285, 287
EnableCalculatedValues5, 53, 55, 60, 88, 90, 91, 150, 151, 183,

185, 217, 218, 240, 241, 242, 291, 292, 357, 360, 364
EnableCategoryValues. 5, 53, 55, 60, 88, 90, 91, 151, 183, 185,

217, 218, 240, 241, 242, 291, 292, 357, 360, 364
EnableChart...57, 99, 100
EnableCPK................................56, 97, 152, 259, 260, 305, 307
EnableCPL..56, 97, 152, 259
EnableCPM................................56, 97, 152, 259, 260, 305, 307
EnableCPU..56, 97, 152, 259
EnableDataToolTip....5, 55, 60, 88, 90, 92, 182, 184, 185, 186,

240, 241, 242, 243, 244, 291, 292, 351, 358, 361, 364
EnableInputStringsDisplay4, 55, 88, 90, 91, 150, 151, 155, 156,

217, 218, 357, 360, 364
EnableJSONDataToolTip...5, 60, 182, 184, 185, 240, 241, 242,

291, 292, 293
EnableNotes 5, 53, 55, 88, 90, 91, 150, 151, 217, 218, 357, 360,

364
EnableNotesString...........60, 183, 185, 240, 241, 242, 291, 292
EnableNotesToolTip. .5, 55, 60, 88, 90, 92, 151, 184, 185, 186,

218, 240, 241, 242, 243, 244, 292, 351, 357, 360, 364
EnablePPK.................................56, 97, 152, 259, 260, 305, 307
EnablePPL...56, 97, 152, 259
EnablePPU..56, 97, 152, 259
EnableProcessCapabilityValues.....55, 60, 88, 90, 91, 150, 152,

183, 185, 240, 241, 242, 291, 292
EnableSampleValues.....................................55, 88, 90, 91, 150
EnableScrollBar.....4, 55, 84, 85, 151, 180, 218, 238, 341, 351,

357, 360, 363
EnableTimeValues. . .5, 55, 88, 90, 92, 150, 151, 217, 218, 357,

360, 364
EnableTotalSamplesValues5, 53, 55, 88, 90, 91, 150, 151, 217,

218, 357, 360, 364
EWMA chart..............................29, 30, 140, 141, 202, 203, 204
EWMA chart..............................29, 30, 140, 141, 202, 203, 204
EWMA_Lambda...56, 204
EWMA_StartingValue..56, 204
EWMA_UseSSLimits...56, 204
example programs....................21, 192, 215, 249, 250, 334, 347
ExcludeRecords.......................................61, 123, 134, 166, 229
Formulas Used in Calculating Control Limits for Attribute

Control Charts...210
Frequency Histogram............................181, 239, 313, 314, 317
Frequency Histogram..313
FrequencyHistogram......5, 50, 51, 57, 61, 63, 67, 99, 104, 181,

197, 198, 239, 254, 313, 314, 315, 317, 319, 321, 331
FrequencyHistogram ...181
FrequencyHistogram. EnableDisplayFrequencyHistogram...239
FrequencyHistogramChart....................................313, 314, 317
FrequencyHistogramChart....................................313, 314, 317
Gauge. . .5, 56, 66, 90, 96, 97, 151, 155, 156, 219, 220, 221, 329
GaugeHeader...56, 66, 156, 221, 329
Gitlow.....v, 9, 68, 115, 116, 264, 265, 266, 267, 269, 273, 274,

275, 279, 281, 331

376 Index

Gitlow Rules.....9, 115, 116, 264, 265, 266, 267, 269, 273, 274,
275, 279, 281

GITLOW_RULES, WESTGARD_RULES..................116, 281
GITLOW_RULES, WESTGARD_RULES,..115, 274, 275, 279
Google...1, 3, 4, 11, 16, 338
GraphBackground..........58, 62, 65, 99, 106, 308, 309, 321, 327
GraphBottomPos..........55, 83, 84, 162, 163, 193, 225, 226, 251
GraphStartPosX....53, 55, 83, 84, 162, 163, 218, 225, 226, 345,

346, 357, 360, 363
GraphStopPosX....53, 55, 83, 84, 162, 163, 225, 226, 345, 346,

347
GraphTopTableOffset..................55, 83, 84, 162, 163, 225, 226
GRID...92, 93, 157, 159, 222, 223, 224
Grid..92, 93, 157, 159, 222, 223, 224
GWT...1, 3, 4, 11, 12, 18, 19, 20, 288, 291, 297, 308, 309, 310,

334, 335, 337, 338, 339, 340, 341, 347, 348, 349, 351
HeaderStringsLevel....4, 53, 55, 88, 90, 91, 151, 155, 156, 160,

218, 219, 220, 221, 357, 360, 364
HistogramPlot...313
HistogramPlot...313
HTML5..............................1, 2, 3, 4, 19, 72, 309, 310, 334, 335
Hughes......v, 9, 10, 68, 115, 116, 264, 265, 266, 267, 269, 272,

274, 275, 277, 279, 280, 281, 331
Hughes Rules.....9, 10, 115, 116, 264, 265, 266, 267, 269, 272,

274, 275, 277, 279, 280, 281
IncludeRecords..61, 123, 134
Individual Range......7, 8, 12, 13, 23, 24, 28, 77, 139, 140, 189,

202, 357, 364
Individual Range............7, 8, 23, 24, 28, 77, 139, 140, 189, 202
InitChartProperties 4, 12, 13, 50, 51, 52, 55, 77, 78, 79, 81, 126,

130, 131, 142, 143, 145, 150, 160, 189, 192, 204, 207, 209,
212, 213, 214, 215, 216, 218, 247, 248, 249, 250, 298, 337,
341, 342, 343, 344, 345, 346, 351, 357, 360, 363

InterGraphMargin........55, 83, 84, 162, 163, 193, 225, 226, 250
jax349
jQuery..vi, 17, 348, 349, 350
jsonlint...18, 334, 337, 342, 343, 345
Juran.....v, 6, 9, 10, 68, 115, 116, 117, 264, 266, 267, 272, 274,

275, 279, 280, 281, 331
Juran Rules.....6, 9, 10, 115, 116, 264, 266, 267, 272, 274, 275,

279, 280, 281
Label...252
LineMarkerPlot....57, 65, 99, 105, 197, 198, 254, 323, 325, 327
LSLValue...........................56, 97, 151, 152, 259, 260, 305, 307
MA chart.. . .8, 23, 26, 29, 30, 32, 33, 48, 77, 81, 100, 128, 140,

141, 145, 147, 189, 202, 203, 204, 205, 206, 207
MA chart. .8, 23, 26, 29, 30, 32, 33, 48, 77, 140, 141, 145, 147,

189, 202, 203, 204, 205, 206, 207
MA_W..56, 207
Machine. .5, 7, 9, 34, 45, 56, 66, 90, 96, 97, 149, 151, 155, 156,

217, 219, 220, 221, 329, 335, 358, 360, 364
MachineHeader...56, 66, 156, 221, 329
MainTitleFont......................................55, 72, 76, 159, 160, 225
MAMR...........8, 23, 24, 31, 77, 78, 99, 139, 141, 144, 189, 206
MAMR Chart..141
MAMR Charts......8, 23, 24, 31, 77, 78, 139, 141, 144, 189, 206
MAMS...........8, 23, 24, 32, 77, 78, 99, 139, 141, 144, 189, 206
MAMS Charts......8, 23, 24, 32, 77, 78, 139, 141, 144, 189, 206
Methods.....iv, 6, 12, 15, 21, 51, 61, 63, 65, 125, 137, 165, 167,

176, 177, 179, 229, 230, 235, 236, 238, 265, 276, 297, 314,
319, 321, 323, 327, 345, 351, 353, 354, 356, 359, 363, 366

MiscChartDataProperties. 51, 56, 174, 179, 188, 204, 207, 214,
246, 345

MiscChartDataProperties..188
Moving Average/Moving Range8, 23, 24, 31, 77, 78, 139, 141,

144, 189, 206
Moving Average/Moving Sigma8, 23, 24, 32, 77, 78, 139, 141,

144, 189, 206
MR part of the MAMR (Moving Average/Moving Range Chart

...206
MS part of the MAMS (Moving Average/Moving Sigma Chart

...206
Multiple SPC Control Limits...........10, 139, 168, 175, 210, 231
Multiple SPC Control Limits...................10, 139, 168, 210, 231
NELSON....9, 10, 115, 116, 264, 265, 266, 269, 272, 274, 275,

279, 280, 281
Nelson.9, 10, 115, 116, 264, 265, 266, 269, 272, 274, 275, 279,

280, 281
Nelson Rules 9, 10, 68, 115, 116, 117, 172, 264, 265, 266, 269,

272, 274, 275, 279, 280, 281, 331
Note. .5, 9, 10, 14, 15, 16, 17, 24, 31, 32, 37, 53, 55, 56, 57, 60,

61, 67, 70, 74, 78, 80, 88, 90, 91, 92, 96, 97, 100, 116, 123,
124, 126, 127, 128, 129, 130, 131, 132, 133, 135, 139, 141,
142, 143, 145, 147, 148, 149, 150, 151, 157, 161, 168, 171,
174, 177, 178, 179, 182, 183, 184, 185, 186, 188, 189, 191,
192, 196, 204, 210, 212, 214, 215, 216, 217, 218, 219, 221,
224, 231, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,
244, 246, 248, 249, 250, 252, 253, 275, 278, 288, 291, 292,
294, 295, 299, 300, 301, 304, 305, 331, 348, 349, 351, 352,
353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364,
365, 366

Notes Tooltips...139, 182, 210, 239
Notes Tooltips...139, 182, 210, 239
NotesHeader...........5, 56, 97, 151, 157, 219, 221, 358, 361, 364
NotesReadOnly........................55, 56, 60, 88, 90, 185, 240, 242
NotesToolTip.....5, 55, 60, 88, 90, 92, 151, 184, 185, 186, 218,

240, 241, 242, 243, 244, 292, 351, 357, 360, 364
NotesToolTip..184, 185, 241, 242
np-chart......40, 42, 129, 130, 210, 211, 214, 215, 248, 249, 256
np-Chart......40, 42, 129, 130, 210, 211, 214, 215, 248, 249, 256
Number Defects per Million....................8, 23, 66, 77, 257, 330
Number Defects per Million..................................8, 23, 77, 257
NumCategoriesPerSubgroup...51, 55
NumDatapointsInView.4, 12, 13, 51, 52, 55, 78, 79, 80, 81, 84,

144, 145, 151, 189, 192, 193, 204, 207, 209, 213, 214, 218,
247, 250, 298, 337, 341, 342, 343, 345, 346, 351, 357, 360,
363

NumSamplesPerSubgroup. 4, 12, 13, 51, 52, 55, 78, 79, 80, 81,
144, 145, 146, 151, 189, 193, 204, 207, 209, 212, 213, 214,
218, 247, 250, 298, 337, 341, 342, 343, 345, 346, 351, 357,
360, 363

Operation....5, 16, 54, 56, 66, 71, 73, 90, 96, 97, 135, 151, 155,
156, 173, 219, 220, 221, 266, 328, 329, 350, 357, 360, 364

OperationHeader........50, 54, 56, 66, 71, 73, 156, 221, 328, 329
Operator..5, 7, 9, 16, 34, 45, 54, 56, 66, 71, 73, 90, 96, 97, 135,

149, 151, 155, 156, 168, 217, 219, 220, 221, 231, 328, 329,
358, 360, 364

OperatorHeader..........50, 54, 56, 66, 71, 73, 156, 221, 328, 329
p-chart.40, 41, 42, 129, 130, 131, 210, 211, 214, 215, 248, 249,

256
p-Chart40, 41, 42, 129, 130, 131, 210, 211, 214, 215, 248, 249,

256
Pareto Chart..323, 324

377

ParetoChart.........50, 51, 63, 65, 67, 99, 323, 324, 325, 327, 331
ParetoChart...323, 324
PartName....5, 15, 56, 90, 96, 97, 135, 151, 155, 156, 219, 220,

221, 357, 360, 364
PartNameHeader........50, 54, 56, 66, 71, 73, 156, 221, 328, 329
PartNumber 5, 15, 56, 90, 96, 97, 135, 151, 152, 155, 156, 157,

219, 220, 221, 357, 360, 364
PartNumberHeader.....50, 54, 56, 66, 71, 73, 156, 220, 328, 329
php.....vi, 17, 348, 349, 350, 351, 352, 353, 355, 356, 357, 360,

363, 366, 367
PlotBackground....58, 62, 65, 99, 106, 107, 197, 198, 254, 308,

309, 321, 327
PlotMeasurementValues....................................57, 99, 105, 180
PrimaryChartSetup...5, 51, 57, 60, 99, 100, 122, 164, 166, 167,

169, 171, 174, 175, 180, 181, 193, 194, 195, 197, 227, 230,
232, 234, 239, 250, 251, 252, 254, 276, 277, 308, 309, 345

ProbabilityChart..67, 68, 331
process capability.. .v, 8, 9, 10, 22, 91, 139, 151, 152, 153, 154,

155, 160, 182, 183, 240, 259, 260, 261, 262, 292
Process Capability. .8, 9, 10, 139, 151, 152, 153, 154, 155, 182,

183, 240, 259, 260, 261, 262, 292
Process Performance..............................139, 151, 154, 155, 262
Process Performance..............................139, 151, 154, 155, 262
ProcessCapabilityDecimals.......................................56, 97, 160
ProcessCapabilitySetup......56, 97, 151, 152, 259, 260, 305, 307
RebuildUsingCurrentData. .12, 61, 84, 137, 138, 165, 166, 176,

177, 179, 180, 229, 235, 236, 238, 276, 314, 323, 351, 353,
354, 356, 359, 363, 366

Redistributable License..ii
Redistributable License..ii
Regionalization..vi, 22, 328
Regionalization...22
ResetSPCChartData..61, 123, 134
Rotation..250
Rule Templates...v, 264, 268
Rule Templates...264, 268
SampleData 12, 14, 15, 16, 17, 51, 60, 102, 123, 125, 126, 127,

128, 130, 131, 132, 134, 135, 138, 146, 147, 148, 166, 167,
176, 178, 179, 191, 195, 215, 216, 229, 230, 235, 237, 248,
249, 252, 276, 298, 299, 304, 345, 348, 349, 350, 351, 352,
353, 355, 358, 361, 364

SampleIntervalRecords. .14, 15, 16, 17, 60, 123, 125, 126, 127,
128, 130, 131, 132, 133, 134, 135, 146, 147, 148, 167, 176,
178, 190, 191, 195, 215, 216, 230, 235, 237, 248, 249, 252,
299, 349, 350, 351, 352, 353, 355, 358, 361, 364

SampleItemDecimals..56, 97, 160
SampleRowHeaderStrings..56, 221
SampleSubgroupSize_VSS..............61, 124, 127, 131, 132, 133
SampleValues...14, 15, 16, 17, 55, 61, 63, 88, 90, 91, 124, 127,

128, 129, 130, 131, 132, 133, 135, 146, 147, 148, 149, 150,
167, 176, 177, 178, 179, 191, 192, 195, 196, 215, 216, 230,
235, 236, 237, 248, 249, 252, 253, 294, 295, 299, 314, 315,
319, 321, 348, 349, 352, 353, 354, 355, 356, 358, 359, 361,
362, 363, 364, 365, 366

Scatter Plots...10, 36, 139, 180, 238
Scatter Plots...10, 36, 139, 180, 238
Scrollbar.. .4, 34, 45, 46, 50, 55, 77, 84, 85, 139, 151, 180, 210,

218, 238, 341, 344, 351, 357, 360, 363
Scrollbar......................................34, 45, 46, 139, 180, 210, 238
ScrollbarPosition..................55, 84, 85, 151, 180, 238, 341, 351
ScrollbarValue...55, 84, 85, 180, 238

SecondaryChartSetup.....5, 51, 60, 99, 100, 122, 166, 167, 170,
175, 181, 198, 308, 309, 345

Simple...12
SPCBatchAttributeControlChart...................................210, 247
SPCChart....4, 12, 13, 15, 16, 17, 50, 51, 53, 55, 77, 78, 79, 83,

88, 90, 99, 123, 125, 126, 135, 143, 145, 150, 160, 176, 178,
189, 192, 204, 207, 209, 212, 213, 214, 215, 216, 218, 235,
237, 247, 250, 298, 299, 305, 307, 336, 341, 343, 344, 345,
346, 349, 350, 351, 352, 353, 355, 357, 360, 363

SPCChartBase...247
SPCChartStrings......iv, vi, 50, 54, 65, 70, 71, 73, 78, 156, 220,

328, 329
SPCChartType....4, 12, 13, 51, 52, 55, 78, 79, 80, 81, 143, 144,

145, 151, 189, 192, 204, 207, 209, 213, 214, 218, 247, 250,
298, 337, 341, 342, 343, 345, 346, 351, 357, 360, 363

SPCControlChartData...219
SPCControlChartData...174
SPCControlLimitRecord...275, 279
SPCControlLimitRecord...275, 279
Specification limits.....9, 97, 137, 139, 151, 171, 175, 233, 259,

283
Specification Limits.............9, 97, 139, 151, 171, 175, 233, 259
SpecificationLimits 5, 56, 60, 66, 90, 96, 97, 99, 118, 120, 121,

151, 155, 156, 171, 175, 219, 220, 221, 233, 283, 329, 357,
360, 364

SpecificationLimitsHeader........................56, 66, 156, 221, 329
SpecifyControlLimitsUsingMeanAndSigma.. .59, 99, 117, 118,

123, 164, 166, 167, 227, 229, 230, 275, 276
StaticProperties50, 54, 69, 71, 78, 156, 159, 160, 220, 224, 225,

309, 328, 336, 342, 345, 346, 351
StringLabel...252
SubHeadFont.......................................55, 72, 76, 159, 160, 225
Table Background Colors..139, 157
Table Background Colors..139, 157
table fonts...224
Table Fonts...224
Table Strings...139, 155
Table Strings...139, 155
TableAlarmEmphasisMode5, 55, 88, 90, 95, 96, 151, 187, 188,

219, 245, 246, 357, 360, 364
TableAlarmEmphasisMode...............95, 96, 187, 188, 245, 246
TableBackgroundMode....5, 53, 54, 55, 88, 90, 92, 93, 94, 151,

157, 158, 159, 219, 222, 223, 224, 357, 360, 364
TableSetup..4, 15, 16, 51, 53, 55, 86, 88, 90, 97, 135, 150, 151,

152, 155, 156, 157, 158, 160, 161, 187, 217, 218, 222, 223,
224, 245, 305, 307, 344, 357, 360, 363

TableStartPosY............................55, 83, 84, 162, 163, 225, 226
templates..........8, 9, 10, 23, 34, 45, 77, 160, 264, 268, 269, 278
Templates.................8, 9, 10, 23, 34, 45, 77, 264, 268, 269, 278
Time-based charts...126, 142
TimeFormat..56, 97
TimeIncrementMinutes....4, 12, 13, 52, 55, 78, 79, 80, 81, 144,

145, 151, 189, 190, 193, 204, 207, 209, 213, 214, 218, 247,
298, 337, 341, 342, 343, 345, 346, 351, 357, 360, 363

TimeStamp 14, 15, 16, 17, 60, 61, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 135, 147, 148, 149, 168, 177, 178,
179, 191, 192, 196, 215, 216, 231, 235, 236, 237, 238, 248,
249, 250, 252, 253, 299, 300, 348, 349, 350, 352, 353, 354,
355, 356, 358, 359, 361, 362, 363, 364, 365, 366

TimeValueRowHeader50, 54, 56, 65, 70, 71, 73, 156, 220, 328,
329

TitleHeader...........50, 54, 56, 65, 70, 71, 73, 156, 220, 328, 329

378 Index

ToolTipFont...55, 72, 76, 159, 160, 225
ToolTipMode.................................55, 60, 88, 90, 185, 240, 242
ToolTips..183, 184, 240, 241
Trial License...ii
Trial License...ii
u-chart...8, 23, 40, 43, 44, 45, 77, 131, 132, 210, 211, 214, 216,

248, 249, 257
u-Chart..8, 23, 40, 43, 44, 45, 77, 131, 132, 210, 211, 214, 216,

248, 249, 257
u-Chart ...44
UnitOfMeasure.5, 56, 90, 96, 97, 151, 155, 156, 219, 220, 221,

358, 360, 364
UnitOfMeasureHeader...............................56, 66, 157, 221, 329
UpdateDisplay...61, 137, 138
UseNoTable....................iv, 12, 13, 51, 55, 77, 85, 86, 161, 344
UseNoTable..161
USLValue..................................56, 97, 152, 259, 260, 305, 307
Variable Control Chart iv, 5, 8, 9, 22, 23, 24, 25, 26, 34, 45, 65,

77, 79, 97, 99, 100, 127, 128, 139, 142, 143, 144, 145, 146,
147, 148, 151, 152, 155, 156, 160, 168, 174, 183, 189, 196,
199, 212, 231, 292, 329

Variable Control Chart 8, 9, 23, 24, 25, 26, 34, 45, 77, 127, 128,
139, 142, 143, 145, 146, 147, 148, 168, 174, 183, 189, 196,
199, 212, 231, 292

variable sample subgroup......................................131, 132, 140
variable sample subgroup......................................131, 132, 140
VariableControlLimits.............61, 124, 127, 167, 168, 230, 231
Visual Studio...334, 335, 336, 337, 351
WE Rules..173, 174, 266
WE rules...173, 174, 266
Web Applications...vi, 22, 328, 334
Web Applications..22, 334
Web Applications - implementing a web site.........................22
Web services...16, 17
Web Site.i, ii, 4, vi, 11, 12, 20, 22, 265, 334, 335, 337, 338, 352
WECO v, 9, 20, 52, 68, 115, 116, 117, 172, 174, 264, 265, 266,

269, 271, 274, 275, 276, 279, 281, 331
WECO 9, 115, 116, 264, 265, 266, 269, 271, 274, 275, 279, 281
WECO+Supplemental...271
Western Electric Rules..173, 264, 265
Western Electric rules...173, 264, 265
WESTGARD9, 10, 115, 116, 265, 268, 273, 274, 275, 279, 281
Westgard... .9, 10, 115, 116, 264, 265, 268, 273, 274, 275, 279,

281
X-Bar R....5, 7, 8, 19, 20, 23, 24, 25, 27, 29, 30, 77, 78, 80, 97,

99, 127, 139, 140, 141, 144, 146, 151, 152, 155, 156, 160,
174, 189, 194, 195, 199, 200, 338

X-Bar R....5, 7, 8, 19, 20, 23, 24, 25, 27, 29, 30, 77, 78, 80, 97,
99, 127, 139, 140, 141, 144, 146, 151, 152, 155, 156, 160,
174, 189, 194, 195, 199, 200, 338

X-Bar Sigma...8, 23, 24, 25, 26, 27, 77, 81, 127, 128, 139, 140,
145, 146, 147, 148, 189, 199, 200

X-Bar Sigma.8, 23, 24, 25, 26, 27, 77, 127, 128, 139, 140, 145,
146, 147, 148, 189, 199, 200

X-R..8, 23, 24, 28, 77, 139, 140, 202
X-R..8, 23, 24, 28, 77, 139, 140, 202
XAxis. 57, 61, 62, 63, 64, 67, 99, 100, 101, 102, 193, 194, 195,

197, 198, 250, 251, 252, 254, 320, 326, 331
XAxisLabelRotation...193, 250
XAxisLabelRotation...193, 250
XAxisLabels.57, 61, 63, 99, 101, 102, 193, 194, 195, 250, 251,

252, 320, 326

XAxisLabes.Rotation..193
XAxisStringLabelMode..252
XAxisStringLabelMode..252
YAxisLeft....................57, 64, 99, 102, 176, 198, 234, 254, 326
YAxisLeftLabels.................................57, 64, 99, 102, 103, 326
YAxisRight..57, 64, 104, 198, 255, 327
ZeroEquals 5, 56, 90, 96, 97, 151, 155, 156, 219, 220, 221, 358,

360, 364
ZeroEqualsHeader.....................................56, 66, 157, 221, 329
ZoneColors..............................58, 107, 110, 169, 170, 171, 234
ZoneFill. .58, 107, 110, 169, 170, 171, 172, 174, 228, 232, 234,

276
..

..

..

..

...317
"AutoLogAlarmsAsNotes": true..............................188, 246
Adding New Sample Records for Batch Attribute Control
Charts..210
Adding New Sample Records for Variable Control Charts
...139
AIAG...264
AutoLogAlarmsAsNotes...139
Batch Control Chart X-Axis Time Stamp Labeling. 139, 210
Batch Control Chart X-Axis User-Defined String Labeling
...139, 210
c-Chart...210
Changing the Batch Control Chart X-Axis Labeling Mode
...210
Chart Position..139, 210
Chart Y-Scale..139, 210
CUSum chart...139
DPMO...210
Duncan..264
Enable Alarm Highlighting......................................139, 210
Enable Chart ScrollBar..210
Enable the Chart ScrollBar..139
Gitlow..264
Hughes...264
Juran..264
MAMR..139
MAMS...139
Measured Data and Calculated Value Tables...................139
Multiple SPC Control Limits...................................139, 210
Named Rule Sets...139
Nelson..264
np-Chart...210
p-Chart...210
Process Capability...139
Scatter Plots...139
Scatter Plots of the Actual Sampled Data........................139
Setting Decimal Precision in the Table............................139
SPC Chart Data and Notes Tooltips.........................139, 210
SPC Chart Histograms...139, 210
SPC Charts without a Table...139
SPC Control Limits..139, 210
Specification Limits...139
Table and Chart Fonts..139
Table Background Colors..139
Table Strings..139
u-Chart...210

379

Updating Chart Data..139, 210
User-Define Data Tooltips and Annotations....................288
Variable SPC Control Limits...................................139, 210
Westgard..264
X-Bar R...139
X-Bar Sigma..139
X-R..139

 v, 9, 10, 43, 68, 94, 115, 116, 117, 172, 219, 252, 264, 265,
266, 269, 271, 272, 274, 275, 279, 280, 281, 331, 338, 347

 Moving Average/Moving Range......8, 23, 24, 31, 77, 78, 141,
144, 189

 Moving Average/Moving Sigma......8, 23, 24, 32, 77, 78, 141,
144, 189

 AIAG Rules.9, 10, 68, 115, 116, 264, 266, 272, 274, 275, 279,
280, 281, 331

 AIAG Rules9, 10, 115, 116, 264, 266, 272, 274, 275, 279, 280,
281

 Cpk 9, 10, 69, 151, 154, 155, 183, 240, 259, 261, 262, 292, 332
 Cpl. 9, 10, 69, 151, 154, 155, 183, 240, 259, 261, 262, 292, 332
 Cpu 9, 10, 69, 151, 154, 155, 183, 240, 259, 261, 262, 292, 332
 Duncan Rules......9, 10, 68, 115, 116, 264, 265, 266, 268, 273,

274, 275, 279, 280, 281, 331
 Duncan Rules....9, 10, 115, 116, 265, 266, 268, 273, 274, 275,

279, 280, 281
 Gitlow Rules......9, 68, 115, 116, 264, 265, 266, 267, 269, 273,

274, 275, 279, 281, 331
 Gitlow Rules....9, 115, 116, 264, 265, 266, 267, 269, 273, 274,

275, 279, 281
 Hughes Rules9, 10, 68, 115, 116, 264, 265, 266, 267, 269, 272,

274, 275, 277, 279, 280, 281, 331
 Hughes Rules.. . .9, 10, 115, 116, 264, 265, 266, 267, 269, 272,

274, 275, 277, 279, 280, 281
 Juran Rules......6, 9, 10, 68, 115, 116, 117, 264, 266, 267, 272,

274, 275, 279, 280, 281, 331
 Juran Rules....6, 9, 10, 115, 116, 264, 266, 267, 272, 274, 275,

279, 280, 281
 limits..169, 232
 MAMR Charts.....8, 23, 24, 31, 77, 78, 99, 139, 141, 144, 189,

206
 MAMR Charts....................8, 23, 24, 31, 77, 78, 141, 144, 189
 MAMS Charts.....8, 23, 24, 32, 77, 78, 99, 139, 141, 144, 189,

206
 MAMS Charts.....8, 23, 24, 32, 77, 78, 99, 139, 141, 144, 189,

206
 Moving Average/Moving Range.8, 23, 24, 31, 77, 78, 99, 139,

141, 144, 189, 206
 Moving Average/Moving Sigma.8, 23, 24, 32, 77, 78, 99, 139,

141, 144, 189, 206
 Nelson Rules 9, 10, 68, 115, 116, 117, 172, 264, 265, 266, 269,

272, 274, 275, 279, 280, 281, 331
 Number Defects per Million. 8, 23, 45, 77, 129, 210, 211, 214,

248
 WECO.....9, 115, 116, 264, 265, 266, 269, 271, 274, 275, 279,

281
 WECO Rules. 9, 20, 52, 68, 115, 116, 117, 172, 174, 264, 265,

266, 269, 271, 274, 275, 276, 279, 281, 331
 X-R..139
"ExcludeRecords...134, 166, 229
"MiscChartDataProperties.....................................174, 188, 246
"MiscChartDataProperties":..174
"PrimaryChartSetup..166, 167, 230
"RebuildUsingCurrentData...138

"RebuildUsingCurrentData"..138
"SecondaryChartSetup..166, 167
"ZoneColors"..110
+-3 Sigma Conntrol Limits...199

	Contact Information
	1. SPC Control Chart Tools for Javascript
	Introduction
	Tutorials
	HTML
	HTML5
	Javascript
	GWT (Google Web Toolkit) as a Productivity Tool
	JSON as the Scripting Language for an SPC Chart
	SPC Control Chart Tools Background
	Quinn-Curtis SPC (Statistical Process Control) Software
	Design Considerations

	Web-Based Versions of QCSPCChart
	Web Browser Application Frameworks which are not Javascript

	QCSPCChart for Javascript
	Simple JSON Formatting Rules in a Nutshell
	Dynamic Creation of JSON
	JSON and Web Services
	Important Javascript vs JSON Considerations
	How to Pass the JSON Script into the QCSPCChart Library

	Directory Structure of QCSPCChart for Javascript
	30-Day Trial Version
	Developer Version

	Tutorials
	Customer Support
	Chapter Summary

	2. Standard SPC Control Charts
	Time-Based and Batch-Based SPC Charts
	Variable Control Charts
	X-Bar R Chart – Also known as the Mean (or Average) and Range Chart
	X-Bar Sigma Chart
	Median Range – Also known as the Median and Range Chart
	Individual Range Chart – Also known as the X-R Chart
	EWMA Chart – Exponentially Weighted Moving Average
	MA Chart – Moving Average
	MAMR Chart – Moving Average / Moving Range
	MAMS Chart – Moving Average / Moving Sigma
	CuSum Chart – Tabular, one-sided, upper and lower cumulative sum
	Measured Data and Calculated Value Tables
	Scatter Plots of the Actual Sampled Data
	Alarm Notification

	Attribute Control Charts
	p-Chart - Also known as the Percent or Fraction Defective Parts Chart
	np-Chart – Also known as the Number Defective Parts Chart
	
	c-Chart - Also known as the Number of Defects or Number of Non-Conformities Chart
	u-Chart – Also known as the Number of Defects per Unit or Number of Non-Conformities per Unit Chart
	DPMO Chart – Also known as the Number of Defects per Million Chart
	Defect and Defect Category Data Tables

	Other Important SPC Charts
	Frequency Histogram Chart
	Pareto Diagrams

	3. Overview of JSON Scripting of SPC Charts
	Top Level
	Secondary Level
	Third Level
	Full List of the Static SPCChartStrings Objects

	4. Static Property Initialization
	Canvas
	Properties

	SPCChartStrings
	DefaultFontName
	DefaultTableFont
	Name
	Size
	Style

	DefaultAlarmColors
	DefaultChartFonts

	5. SPC Initial Chart Setup
	InitChartProperties setup
	SPCChartType
	ChartMode
	NumCategories
	NumSamplesPerSubgroup
	NumDatapointsInView
	TimeIncrementMinutes
	CuSumKValue
	CuSumHValue
	CuSumMeanValue
	SPCChartType
	ChartMode
	NumSamplesPerSubgroup
	NumDatapointsInView
	TimeIncrementMinutes

	Chart and Table Positioning
	GraphStartPosX
	GraphStopPosX
	TableStartPosY
	GraphTopTableOffset
	GraphBottomPos
	InterGraphMargin
	BottomLabelMargin

	Scrollbar
	EnableScrollBar
	ScrollbarPosition
	ScrollbarValue

	UseNoTable
	PrimaryChart
	SecondaryChart
	Histograms
	Title

	6. SPC Data Table Setup
	Table Setup Items
	HeaderStringsLevel
	EnableInputStringsDisplay
	EnableCategoryValues (EnableSampleValues also works)
	EnableCalculatedValues
	EnableProcessCapabilityValues
	EnableTotalSamplesValues
	EnableNotes
	EnableTimeValues
	EnableDataToolTip
	EnableNotesToolTip
	TableBackgroundMode
	ChartAlarmEmphasisMode
	TableAlarmEmphasisMode
	ChartData

	7. SPC Chart Setup
	Enable Chart
	Axes
	XAxis
	LineColor
	LineWidth
	Example

	XAxisLabels
	Font
	Name
	Size
	Style
	TextColor
	Rotation
	Format
	CustomFormatString
	OverlapLabelMode
	AxisLabelMode
	Example

	YAxisLeft
	LineColor
	LineWidth
	MinValue
	MaxValue
	Example

	YAxisLeftLabels
	Font
	Name
	Size
	Style
	TextColor
	Rotation
	Format
	CustomFormatString
	OverlapLabelMode
	Decimal
	Example

	YAxisRight
	LineColor
	LineWidth
	Example

	FrequencyHistogram
	EnableDisplayFrequencyHistogram
	PlotBackgroundColor
	BarColor

	PlotMeasurementValues
	PlotMeasurementValues
	Example

	LineMarkerPlot
	LineColor
	LineWidth
	SymbolColor
	SymbolFillColor
	SymbolType
	Example

	GraphBackground
	FillColor
	BackgroundMode
	GradientStartColor
	GradientStopColor

	PlotBackground
	FillColor
	BackgroundMode
	GradientStartColor
	GradientStopColor
	Example

	Control Limits
	Font
	Name
	Size
	Style
	Example

	DefaultLimits
	DefaultLimits[0]
	DefaultLimits[1]
	Example

	SetLimits
	Example

	Decimal
	Decimal
	Example

	ZoneFill
	ZoneColors
	Target
	LineColor
	TextColor
	LineWidth
	LimitValue
	DisplayString
	EnableAlarmLine
	EnableAlarmChecking
	Example

	LCL3
	LineColor
	TextColor
	LineWidth
	LimitValue
	DisplayString
	EnableAlarmLine
	EnableAlarmChecking
	EnableAlarmLineText
	Example

	UCL3
	LineColor
	TextColor
	LineWidth
	LimitValue
	DisplayString
	EnableAlarmLine
	EnableAlarmChecking
	EnableAlarmLineText
	Example

	123SigmaControlLimits
	Target
	LCL3Value
	UCL3Value
	AlarmTest12
	EnableAlarmLine
	EnableAlarmChecking
	EnableAlarmLineText

	NamedRuleSet
	RuleSet
	RuleEnable
	CustomizeRules
	Example

	AddControlRules
	RuleSet
	RuleNumber
	EnableAlarmLine
	EnableAlarmChecking
	EnableAlarmLineText
	M
	N
	SigmaLevel

	SpecifyControlLimitsUsingMeanAndSigma
	Mean
	Sigma

	SpecificationLimits
	Font
	Name
	Size
	Style

	Decimal
	Decimal

	LowSpecificationLimit
	LineColor
	TextColor
	LineWidth
	LimitValue
	DisplayString
	EnableAlarmLine
	EnableAlarmChecking
	EnableAlarmLineText
	Example

	HighSpecificationLimit
	LineColor
	TextColor
	LineWidth
	LimitValue
	DisplayString
	EnableAlarmLine
	EnableAlarmChecking
	EnableAlarmLineText
	Example

	SecondaryChartSetup

	8. Adding Data to an SPC Chart
	SampleIntervalRecords
	TimeStamp
	BatchCount
	BatchNumber
	Note
	BatchIDString
	VariableControlLimits: [double:1,double:1, …]
	SampleSubgroupSize_VSS: integer: -1
	SampleValues [double, double,...]
	SampleValues for Variable Control Charts with a fixed sample size
	SampleValues for Variable Control Charts with a variable sample size

	DataSimulation
	StartCount
	Count
	Mean
	Range

	ExcludeRecords
	IncludeRecords
	ResetSPCChartData
	Dynamic Creation of JSON

	9. Calculate and Update Methods
	AutoCalculateControlLimits
	Example

	AutoScaleYAxes
	RebuildUsingCurrentData
	UpdateDisplay

	10. Variable Control Charts
	X-Bar R Chart – Also known as the Mean (or Average) and Range Chart
	X-Bar Sigma – Also known as the X-Bar S Chart
	Median Range – Also known as the Median and Range Chart
	Individual Range Chart – Also known as the X-R Chart
	EWMA Chart – Exponentially Weighted Moving Average
	MA Chart – Moving Average
	MAMR Chart – Moving Average/Moving Range
	MAMS Chart – Moving Average / Moving Sigma
	CuSum Chart – Tabular, one-sided, upper and lower cumulative sum
	Time-Based and Batch-Based SPC Charts
	Special Note on the use of Time-based verus Batch-based Variable Control Charts
	
	Creating a Variable Control Chart
	SPCChartType
	ChartMode
	NumCategories
	NumSamplesPerSubgroup
	NumDatapointsInView
	TimeIncrementMinutes
	CuSumKValue
	CuSumHValue
	CuSumMeanValue

	Adding New Sample Records for Variable Control Charts
	Updating MEAN_SIGMA_CHART_VSS with a variable number of samples per subgroup

	Measured Data and Calculated Value Tables
	Process Capability Ratios and Process Performance Indices
	Formulas Used in Calculating the Process Capability Ratios
	SPC Control Chart Nomenclature
	USL = Upper Specification Limit
	Process Capability Ratios (Cp, Cpl, Cpu, Cpk and Cpm)
	Process Performance Indices (Pp, Ppl, Ppu, Ppk)

	Table Strings
	Special Note

	Table Background Colors
	Table and Chart Fonts
	Setting Decimal Precision in the Table
	SPC Charts without a Table
	PrimaryChart
	SecondaryChart
	Histograms
	Title
	Example

	Chart Position
	SPC Control Limits
	Variable SPC Control Limits
	Multiple SPC Control Limits
	Named Rule Sets
	Specification Limits
	Chart Y-Scale
	Updating Chart Data
	Scatter Plots of the Actual Sampled Data
	Enable the Chart ScrollBar
	SPC Chart Histograms
	SPC Chart Data and Notes Tooltips
	Enable Alarm Highlighting
	EnableAlarmStatusValues
	ChartAlarmEmphasisMode

	AutoLogAlarmsAsNotes

	Creating a Batch-Based Variable Control Chart
	SPCChartType
	ChartMode
	NumCategories
	NumSamplesPerSubgroup
	NumDatapointsInView
	TimeIncrementMinutes
	CuSumKValue
	CuSumHValue
	CuSumMeanValue
	Changing the Batch Control Chart X-Axis Labeling Mode
	Batch Control Chart X-Axis Time Stamp Labeling
	Batch Control Chart X-Axis User-Defined String Labeling

	Changing Default Characteristics of the Chart
	Formulas Used in Calculating +-3 Sigma Conntrol Limits for Variable Control Charts
	SPC Control Chart Nomenclature
	UCL = Upper Control Limit
	X-Bar R Chart – Also known as the Mean (or Average) and Range Chart
	X-Bar Sigma – Also known as the X-Bar S Chart
	Median Range – Also known as the Median and Range Chart
	Individual Range Chart – Also known as the X-R Chart
	EWMA Chart – Exponentially Weighted Moving Average
	MA Chart – Moving Average
	CuSum Chart – Tabular, one-sided, upper and lower cumulative sum

	11. SPC Attribute Control Charts
	Introduction to SPC Attribute Control Charts
	Time-Based and Batch-Based SPC Charts
	Creating an Attribute Control Chart
	Parameters
	ChartMode
	TimeIncrementMinutes

	Special Note for DPMO Charts
	Adding New Sample Records for Attribute Control Charts.
	Chart Header Information, Measured Data and Calculated Value Table
	Table and Chart Fonts
	
	Chart Position
	SPC Control Limits
	Variable SPC Control Limits
	Multiple SPC Control Limits
	Chart Y-Scale
	Updating Chart Data
	Scatter Plots of the Actual Sampled Data
	Enable Chart ScrollBar
	SPC Chart Histograms
	SPC Chart Data and Notes Tooltips
	Enable Alarm Highlighting
	EnableAlarmStatusValues
	ChartAlarmEmphasisMode

	AutoLogAlarmsAsNotes

	Creating a Batch-Based Attribute Control Chart
	Parameters
	ChartMode
	TimeIncrementMinutes
	Adding New Sample Records for Batch Attribute Control Charts.
	Changing the Batch Control Chart X-Axis Labeling Mode
	Batch Control Chart X-Axis Time Stamp Labeling
	Batch Control Chart X-Axis User-Defined String Labeling

	Changing Default Characteristics of the Chart
	Formulas Used in Calculating Control Limits for Attribute Control Charts
	SPC Control Chart Nomenclature
	UCL = Upper Control Limit
	Fraction Defective Parts – Also known as Fraction Non-Conforming or p-chart
	Percent Defective Parts – Also known as Percent Non-Conforming or p-chart
	Number of Defective Parts – Also known as the Number Nonconforming or np-chart
	Number Defects Per Million – Also known as DPMO
	Number of Defects Control Chart – Also known as Number Nonconformities or c-chart
	Number of Defects per Unit Control Chart – Also known as Number Nonconformities per Unit or u-chart

	12. Process Capability Ratios and Process Performance Indices
	Introduction to Process Capability Ratios and Process Performance
	Formulas Used in Calculating the Process Capability Ratios
	SPC Control Chart Nomenclature
	USL = Upper Specification Limit
	Process Capability Ratios (Cp, Cpl, Cpu, Cpk and Cpm)
	Process Performance Indices (Pp, Ppl, Ppu, Ppk)

	13. Named and Custom Control Rule Sets
	Named Rule Sets
	Western Electric (WECO) Rules
	Nelson Rules
	AIAG Rules
	Juran Rules
	Hughes Rules
	Gitlow Rules
	Duncan Rules
	Westgard Rules
	Control Rule Templates
	Standardized Templates for Control Rule Evaluation
	Standardized Template Parameters and Rule # Cross Reference for Named Rules

	Implementing a Named Rule Set
	NamedRuleSet
	RuleSet
	RuleEnable

	SpecifyControlLimitsUsingMeanAndSigma
	Mean
	Sigma

	Modifying Existing Named Rules
	Creating Custom Rules Sets Based on Named Rules
	RuleSet
	RuleNumber
	EnableAlarmLine
	EnableAlarmCheckin
	EnableAlarmLineText
	M
	N
	DefaultLimits[0]
	DefaultLimits[1]

	Creating Custom Rules Sets Based on a Template
	RuleSet
	RuleNumber
	EnableAlarmLine
	EnableAlarmChecking
	EnableAlarmLineText
	M
	N
	SigmaLevel

	Creating Custom Rules Not Associated With Sigma Levels
	Font
	Name
	Size
	Style
	Decimal
	Decimal

	LowSpecificationLimit
	LineColor
	TextColor
	LineWidth
	LimitValue
	DisplayString
	EnableAlarmLine
	EnableAlarmChecking
	EnableAlarmLineText

	HighSpecificationLimit
	Enable Alarm Highlighting
	Trending
	Oscillation
	Stratification

	14. Event Handling for Alarms and Tooltips
	Processing Alarms
	AlarmStateEventEnable
	AlarmTransitionEventEnable
	ChartNumber
	DataIndex
	AlarmLimitValue
	CurrentValue
	TimeStampLong
	TimeStampString
	AlarmMessage
	SigmaLevel
	Template
	RuleSet
	RuleNumber
	IsSigmaLimit
	NumberValuesForRuleViolation
	NumberValuesInCalculation
	Example

	Processing Data Tooltips
	Standard Data Tooltips
	Example

	User-Define Data Tooltips and Annotations
	Example

	SPCChartMouseEvent
	ChartType
	DataIndex
	SampleIntervalMean
	SampleIntervalSigma
	SampleValues
	TimeStampLong
	TimeStampString
	Notes
	Example

	SPCChartMouseEventResult
	Action
	Message
	TextBoxWidthPx
	TextBoxHeightPx
	TextBoxWidthChar
	TextBoxHeightChar

	15. JSNI Calls into the QCSPCChart Library
	Chart Creation/Modification Functions
	pushJSONChartCreate
	Example

	pushJSONChartUpdate
	Example

	Data Simulation Functions
	pushGetSimulateDataJSON
	count
	mean
	range

	pushSimulateDataUpdate
	count
	mean
	range

	pushSimulateDataUpdatePercentChange
	count
	meanpercentchange
	rangepercentchange
	Example

	Display of JSON Script
	pushDisplayJSONScript
	jsonstring
	Example

	Data Retrieval Functions
	pushGetJSONSampleIntervalData
	Example

	pushGetJSONOverallStatistics
	Example

	16. CSS Style Sheets
	Background Color
	Default Font Family
	Chart Position

	17. Frequency Histogram
	Frequency Histogram Chart
	Creating an Independent (not part of a SPC chart) Frequency Histogram

	Supplying Data to A Frequency Histogram Chart
	Parameters
	Changing Default Characteristics of the Chart
	Adding Control Lines and Normal Curve to Histogram Plot

	JSON Structure Summary

	18. Pareto Diagrams
	Pareto Diagrams
	Creating a Pareto Diagram

	Supplying a Pareto Chart with Data
	Example
	Changing Default Characteristics of the Chart

	JSON Structure Summary

	19. Regionalization
	Example
	Full List of the Static SPCChartStrings Objects

	20. Using SPC Control Chart Tools for Javascript to Create Web Applications
	Deployment to an actual web site
	Deployment to a computer that is not a web server
	Editing and Debugging using Visual Studio

	Example Applications
	JSONLint.com

	Javascript, jQuery, Ajax and PHP
	Update Chart Data by Pushing New Array Elements into a charts SampleData Stucture
	$.ajax Parameters
	Update Chart Data Using pushJSONChartUpdate with PHP
	Create a New Chart from PHP Script

	Appendix
	List of Color Constants:

