
Programing QCSPCChart using NextJS (Next.js)

Introduction

NextJS is an open-source web application framework promulgated by the American cloud services
company Vercel. NextJS is built on top of the React Javascript library and adds many features that
developers find useful in web app programming. NextJS and React are both well documented online
and you can start learning it here: NextJS, and React. The upside is that you can develop websites with
sophisticate UI very quickly using these tools. The downside is that they have a steep learning curve for
the average HTML/JavaScript programmer, and they are moving targets because they are constantly
changing.

Truth in Advertizing: We are not experts at programming NextJS. We are writing this programming
guide because a customer of ours had a requirement that SPC charts be displayed in a NextJS app. Not
being familiar with NextJS, we looked into it, and with the help of the customer were able to display
the SPC charts in a simple NextJS app. The discussion that follows is based on that interaction. It is not
necessarily the only way to utilize the QCSPCChartTS library with NextJS, nor the best, nor the most
efficient. But it seems both fast loading and reliable.

NextJS can be used with both JavaScript and TypeScript, though 99% of the examples on the web are
for JavaScript. Using it TypeScript requires that you monkey around with the *.json files defining the
project settings, and we didn’t get into that. So this example assumes you are using JavaScript.

NextJS normally generates HTML pages on the server side of the web application and sends them to
the client browser. But HTML libraries which use the HTML 5 canvas element, such as
QCSPCChartTS, are setup for server-side rendering and must be rendered directly on the browser.
There are special features of NextJS that you need to use to restrict canvas rendering to within the
browser. Also, because of the asynchronous nature web browsers, you must import (load) the
QCSPCChartTS library in a special way to make sure that it is completely loaded before you start
making calls into the library.

Install the NextJS-blog example project from the NextJS website

First, start with the standard first project tutorial described by NextJS on their website. You will find
that here: Create a Next.js App. If you don’t already have NextJS installed, you will need to follow all
of the steps in the Create a Next.js App example. It’s pretty well automated with npm commands and
easy to do. Once NextJS is installed you can also use npm to install the apps project. Ultimately you
end up with a folder named nextjs-blog on your development computer. Under that folder you will
have more folders representing different elements of the application. You may find that you have an old
versions of npm, react and next.js installed on your development computer and have to update them to
a newer version. Once you have the app installed, and can compile and run it, then you are ready to
make the modifications necessary to utilize the QCSPCChartTS library to display SPC Charts.

The nextjs-blog example, being the most basic example of the NextJS framework, only has a single
page. This is represented by the index.js file in the /pages folder. If you develop a multi-page
application your /pages folder will most likely have a separate *.js file for every page. While these files
are JavaScript files, they serve to define HTML templates for their associated page. So that when a

https://nextjs.org/
https://nextjs.org/learn-pages-router/basics/create-nextjs-app
https://react.dev/blog/2023/03/16/introducing-react-dev

function is called (Home in the index.js file), it returns an HTML template for the web page. The
objective is to insert an SPC chart within the HTML template.

Modify the NextJS-blog example with our files

Once you can run the nextjs-blog example, download the following three files from our website:

index.js – replace the index.js file in the projects /pages folder
HelloSPC.js – place in the projects /public folder.
QCSPCChart_NextJS.pdf – this document.

You can download them from our website at:
https://quinn-curtis.com/downloadsoftware/qcspcchart_nextjs01.zip .

You must also place a copy of our qcspcchartts.js file in the projects /public folder, next to the
HelloSPC.js file from the download. You will find the original qcspcchartts.js file to copy from in the
Quinn-Curtis/JSTS/QCSPCChartTS folder. You can use either commercial version of the library, or the
trial version.

As with most of our example programs, an SPC chart is defined in an external JavaScript (or
TypeScript) file, keeping the chart creation code mostly segregated from the HTML layout code. In
this case the external JavaScript file name is HelloSPC.js. This file is found in the projects /public
folder, along with some files that were already part of the project. External JavaScript files such as this
should be placed in the /public folder, and not the /pages folder. The HelloSPC.js file must be loaded
into the browser when the parent HTML page is loaded, ruling out preprocessing on the server-side.
This is accomplished using the built-in NextJS component <Script>. While <Script> is similar to the
standard HTML <script> tag, it has some added features which apply specifically to NextJS
applications. These features include delayed loading of the referenced JavaScript file (called strategy),
and onLoad, onReady and onError events to trigger. So you will want to read about those in the NextJS
<Script> documentation.

Starting with the /pages/index.js file from the default installation of the nextjs-blog example, we add
the following lines of code, highlighted in red, in the <main> section (directly above the line “<div
className={styles.grid}” :

import Head from 'next/head';
import styles from '../styles/Home.module.css';
import Script from 'next/script';

export default function Home() {
 return (
 <div className={styles.container}>
 <Head>
 <title>Create Next App</title>
 <link rel="icon" href="/favicon.ico" />
 </Head>

 <main>
 <h1 className={styles.title}>
 Welcome to Next.js!
 </h1>

https://quinn-curtis.com/downloadsoftware/qcspcchart_nextjs01.zip
https://nextjs.org/docs/app/api-reference/components/script
https://nextjs.org/docs/app/api-reference/components/script

 <p className={styles.description}>
 Get started by editing <code>pages/index.js</code>
 </p>
 <div id="buttondiv">
 <button type="button" id="xbarr_menuitem">XBar-R</button>
 </div>

 <div id="canvasdiv" >
 <canvas id="spcChartCanvas1" width="800" height="600"></canvas>
 </div>

 <Script
 src='/HelloSPC.js'
 strategy='afterInteractive'
 onLoad={() =>
 {
 BuildXBarRChart("spcChartCanvas1");
 // xbarrchart is a parameterless function found in the loaded src file.
 document.getElementById("xbarr_menuitem").onclick = xbarrchart;
 console.log(`script loaded correctly, window.FB has been populated`)
 }
 }
 onError={(e) => {
 console.error('Script failed to load', e)
 }
 }
 />

 <div className={styles.grid}>

 <h3>Documentation →</h3>
 <p>Find in-depth information about Next.js features and API.</p>

.
.
.
.

The “buttondiv” section defines an HTML button that is used to trigger an update of the chart. The
“canvasdiv” section defines the HTML canvas element where the SPC chart will be placed. The canvas
element is given the name “spcChartCanvas1”, and a size. The name of this canvas element is later
passed into the chart building function, so that it can place the chart in the canvas. The <Script>
component will delay loading the HelloSPC.js file until the time determined by the strategy prop, in
this case “afterInteractive”, which mean after the interactive elements of the page have been rendered
in the browser. Then the source file for the Script (src=/HelloSPC.js) will be loaded right before the
onLoad event is called. Inside the onLoad event the SPC chart is built by calling the function
BuildXBarChart, which is a function in the HelloSPC.js file. The “afterInteractive” value for strategy is
the default for the <Script> component so you can explicitly set it or leave it out. Other settings may
not, or won’t work. Note: you must place an import for Script at the top of the file, see the example.

The HelloSPC.js chart building file is almost identical to the one from our standard JavaScript example
HelloSPC. The only change is in the way the QCSPCChartTS.js library is imported. Our standard
JavaScript and TypeScript examples all use what is known as an ES6 import,

import * as QCSPCChartTS from '../../QCSPCChartTS/qcspcchartts.js';

This won’t work from a file loaded inside of <Script>. It complains about the loaded code not being a
module. This may be fixable by adjusting the code in some way, but a simpler variant does work. A few
things need to be changed. First the import is changed to a dynamic import looking like this:

QCSPCChartTS = await import('/qcspcchartts.js');

the default location of our library, in folder QCSPCChartTS, is not accessible in this application. That
is because the NextJS server running at localhost:3000 assumes that the nextjs-blog folder is the root
directory and it will not permit file access beyond the root location for security reasons. So instead you
must copy the QCSPCChartTS/qcspcchartts.js file from the QCSPCChartTS folder and into the nextjs-
blog/public folder, next to the HelloSPC.js file. Then you access the file using a file location of
/qcspcchartts.js, as in the example.

It is important that the import statement uses the wait modifer. Otherwise the imported library will
be loaded asynchronously with everything else that is going on. This will cause an error, because calls
will start to made into the library before it finishes loading. So you must use await, which makes sure
that execution on subsequent lines of code do not happen before the library finishes loading. Since the
import method uses await, it must be called inside of a function marked async, which in this case is the
BuildXBarRChart function. So that is where to place the import, before any calls to the qcspcchartts.js
library are made. In order to make the QCSPCChartTS namespace globally available we made
QCSPCChartTS a var at the top of the file and assign it a value of null. Then it is reassigned to the
imported qcspcchartts.js library when it is imported inside the BuildXBarRChart function.

var xbarrchart;
var overallStats;
var sampleIntervalStats;
var QCSPCChartTS = null;

async function BuildXBarRChart(canvasid) {

 QCSPCChartTS = await import('/qcspcchartts.js');

 if (canvasid == null) return;
 var htmlcanvas = document.getElementById(canvasid);
 var spccharttype = QCSPCChartTS.SPCControlChartData.MEAN_RANGE_CHART;
 var subgroupsize = 5;.
 var numberpointsinview = 12;
 var charttitle = "XBar-R Example";
.
.
.

Note how the function obtains the HTML canvas element from the canvas id string passed in as
canvasid. It does this by calling the HTML document function getElementById. If this code was being
preprocessed on the server, as a lot of NextJS code is, the document element would not be present,
because it is part of the client-side browser, so the function would fail, and everything would fail. But,
by placing the SPC chart creation in a NextJS <Script> component, the execution of the code is
delayed until a browser is present, and the corresponding document element available.

From that point on, everything seems to work as documented in our manual.

Summary

In summary, in order to make use of this example you must do the following:

1. Install the Quinn-Curtis QCSPCChart for JavaScript/TypeScript on your computer. It can be either
the commercial version or the trial version. It should end up in a folder name Quinn-Curtis with the
JavaScript/TypeScript specific stuff in the sub folder JSTS. You should probably follow our own

example at the end of the user manual and run one or more examples for JavaScript. Once you can do
that you are ready to combine it with NextJS.

2. Go to the NextJS tutorial located here: Create a Next.js App. Install the nextjs-blog example app in
our subfolder JSTS. You will need to use some sort of cmd window with executive privileges in order
to do that. Study the NextJS tutorial until you can get the nextjs-blog app to run. You run and test it by
pointing a browser to the location http://localhost:3000, which is the location of the NextJS test server
on your computer.

3. Once you can run the nextjs-blog example, download the following three files from our website:

index.js – replace the index.js file in the projects /pages folder
HelloSPC.js – place in the projects /public folder.
QCSPCChart_NextJS.pdf – this document.

You can download them from our website at:
https://quinn-curtis/downloadsoftware/ qcspschart_ nextjs01.zip .

You must also place a copy of our qcspcchartts.js file in the projects public folder, next to the
HelloSPC.js file from the download. You will find the original qcspcchartts.js file to copy from in the
Quinn-Curtis/JSTS/QCSPCChartTS folder.

Special note

If you have a better way of importing external JavaScript (such as our HelloSPC.js chart building code,
and the qcspcchartts.js library) into NextJS apps and are willing to share it, send us an email.

https://quinn-curtis/downloadsoftware/nextjsfiles01.zip
https://quinn-curtis/downloadsoftware/nextjsfiles01.zip
https://quinn-curtis/downloadsoftware/nextjsfiles01.zip
http://localhost:3000/
https://nextjs.org/learn-pages-router/basics/create-nextjs-app

	Programing QCSPCChart using NextJS (Next.js)
	Introduction
	Install the NextJS-blog example project from the NextJS website
	Modify the NextJS-blog example with our files
	Summary
	Special note

